Publication: Characterizations of riesz sets
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Ülger, Ali | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-11-09T23:28:43Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Let G be a compact abelian group, M(G) its measure algebra and L 1(G) its group algebra. For a subset E of the dual group Ĝ, let ME(G) = {μ ∈ M(G) : μ̂ = 0 on Ĝ\E} and L 1E(G) = {a ∈ L1(G) : â = 0 on Ĝ\E}. The set E is said to be a Riesz set if ME(G) = L 1E(G). In this paper we present several characterizations of the Riesz sets in terms of Arens multiplication and in terms of the properties of the Gelfand transform Γ : L1E(G) → c0(E). | |
dc.description.indexedby | Scopus | |
dc.description.issue | 2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 108 | |
dc.identifier.doi | 10.7146/math.scand.a-15171 | |
dc.identifier.issn | 0025-5521 | |
dc.identifier.quartile | Q4 | |
dc.identifier.scopus | 2-s2.0-79958732247 | |
dc.identifier.uri | https://doi.org/10.7146/math.scand.a-15171 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/11942 | |
dc.identifier.wos | 293426000007 | |
dc.language.iso | eng | |
dc.publisher | Mathematica Scandinavica | |
dc.relation.ispartof | Mathematica Scandinavica | |
dc.subject | Mathematics | |
dc.title | Characterizations of riesz sets | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Ülger, Ali | |
local.publication.orgunit1 | College of Sciences | |
local.publication.orgunit2 | Department of Mathematics | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |