Publication:
Quantum mechanics of Proca fields

dc.contributor.coauthorZamani, Farhad
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMostafazadeh, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:14:23Z
dc.date.issued2009
dc.description.abstractWe construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTurkish Academy of Sciencs (Turkish Academy of Sciences (TÜBA))
dc.description.versionPublisher version
dc.description.volume50
dc.identifier.doi10.1063/1.3116164
dc.identifier.eissn1089-7658
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00576
dc.identifier.issn0022-2488
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-66749149932
dc.identifier.urihttps://doi.org/10.1063/1.3116164
dc.identifier.wos266443700007
dc.keywordsAngular momentum
dc.keywordsChiral symmetries
dc.keywordsCpt invariance
dc.keywordsGauge field theory
dc.keywordsHelicity (elementary particles)
dc.keywordsHilbert spaces
dc.keywordsLorentz invariance
dc.keywordsProbability
dc.keywordsRelativistic Quantum mechanics
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.ispartofJournal of Mathematical Physics
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/629
dc.subjectMathematical physics
dc.titleQuantum mechanics of Proca fields
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMostafazadeh, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
629.pdf
Size:
577.7 KB
Format:
Adobe Portable Document Format