Publication:
Multifunctional hernia repair biopatch: development, characterization, in vitro and in vivo evaluation

Placeholder

School / College / Institute

Organizational Unit
Organizational Unit
SCHOOL OF MEDICINE
Upper Org Unit

Program

KU Authors

Co-Authors

Deveci, Mehmet Zeki Yılmaz
Engüven, Gözde
Ege, Hasan
Alakuş, İbrahim
Ağtürk, Gökhan
Yılmaz, Senanur
Kırgız, Ömer
Akçakavak, Gökhan
Kazak, Filiz
Aksu, Burak

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Incisional hernia, a prevalent postoperative complication, is characterized by the protrusion of organs or tissues through damaged abdominal wall. Predisposing factors for hernias include obesity, wound infections, immunosuppression, and comorbidities. However, hernia patches currently in use, including the commercial polypropylene (PP) patch, still have limitations in providing the mechanical and biological properties necessary for abdominal wall regeneration. In this study, three dimensional (3D) printing and coaxial electrospinning methods were combined to create a multifunctional double layered hernia repair biopatch to overcome these limitations. The double-layer design of the biopatch serves a multifunctional role in addressing incisional hernia models, with 3D printed ciprofloxacin (CIP) loaded polycaprolactone (PCL)/gelatin (Ge) scaffold (3DCIP) layer and coaxially electrospun PCL/Ge/κ-carrageenan (κ-C) nanofiber (NF) layers. While 3DCIP layers provides temporary mechanical reinforcement to the damaged abdominal wall, prevention of adhesions to internal organs, and reduction of surgical site infections, NF layer serves as tissue regeneration and fast wound healing. The developed multifunctional hernia biopatches underwent comprehensive physical and chemical characterization, followed by in vitro and in vivo evaluations. These evaluations included comparisons with a commercial PP patch, which was used as the control in the experiments. The study successfully fabricated multifunctional hernia biopatches with excellent antibacterial properties, high mechanical robustness, and strong biocompatibility.

Source

Publisher

Editions de Sante

Subject

Pharmacology, Pharmacy

Citation

Has Part

Source

Journal of Drug Delivery Science and Technology

Book Series Title

Edition

DOI

10.1016/j.jddst.2024.106132

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details