Publication: Molecular modeling-based machine learning for accurate prediction of gas diffusivity and permeability in metal–organic frameworks
| dc.contributor.department | Department of Chemical and Biological Engineering | |
| dc.contributor.kuauthor | Sezgin, Pelin | |
| dc.contributor.kuauthor | Yungul, Feride Neva | |
| dc.contributor.kuauthor | Karaca, Beste Naz | |
| dc.contributor.kuauthor | Gülbalkan, Hasan Can | |
| dc.contributor.kuauthor | Keskin, Seda | |
| dc.contributor.schoolcollegeinstitute | College of Engineering | |
| dc.date.accessioned | 2025-12-31T08:22:42Z | |
| dc.date.available | 2025-12-31 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Gas diffusion determines the performance of metal-organic frameworks (MOFs) in various practical applications, including membrane-based separations, yet its experimental measurement is challenging. We presented an efficient computational framework that integrates high-fidelity molecular dynamics (MD) simulations with machine learning (ML) to predict the diffusivities of CO2, N-2, O-2, CH4, and H-2 in >18,000 synthesized and hypothetical MOFs. ML models trained on MD data accurately predicted gas diffusivities of any given MOF within minutes using only easily accessible structural and guest-related properties. We provided an interactive, user-friendly web interface for predicting diffusivities of MOFs to facilitate material selection. Leveraging ML-predicted diffusivities, we evaluated membrane-based gas separation performances of all MOFs for seven industrially important separations: CO2/N-2, CO2/CH4, N-2/CH4, H-2/CO2, H-2/CH4, H-2/N-2, and O-2/N-2. The best MOF membranes offering high selectivity and permeability were identified and analyzed by using molecular fingerprinting to reveal the critical chemical properties for designing next-generation MOFs. | |
| dc.description.fulltext | No | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | WOS | |
| dc.description.openaccess | gold | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | EU | |
| dc.description.sponsorship | HORIZON EUROPE European Research Council [101124002] | |
| dc.identifier.doi | 10.1021/acsmaterialsau.5c00111 | |
| dc.identifier.embargo | No | |
| dc.identifier.grantno | 101124002 | |
| dc.identifier.issn | 2694-2461 | |
| dc.identifier.quartile | Q2 | |
| dc.identifier.uri | https://doi.org/10.1021/acsmaterialsau.5c00111 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/31673 | |
| dc.identifier.wos | 001615589200001 | |
| dc.keywords | Metal-organic framework | |
| dc.keywords | Molecular simulation | |
| dc.keywords | Machine learning | |
| dc.keywords | Diffusion | |
| dc.keywords | Gas separation | |
| dc.language.iso | eng | |
| dc.publisher | American Chemical Society | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | ACS Materials Au | |
| dc.relation.openaccess | No | |
| dc.rights | Copyrighted | |
| dc.subject | Chemistry | |
| dc.subject | Materials Science | |
| dc.title | Molecular modeling-based machine learning for accurate prediction of gas diffusivity and permeability in metal–organic frameworks | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| person.familyName | Sezgin | |
| person.familyName | Yungul | |
| person.familyName | Karaca | |
| person.familyName | Gülbalkan | |
| person.familyName | Keskin | |
| person.givenName | Pelin | |
| person.givenName | Feride Neva | |
| person.givenName | Beste Naz | |
| person.givenName | Hasan Can | |
| person.givenName | Seda | |
| relation.isOrgUnitOfPublication | c747a256-6e0c-4969-b1bf-3b9f2f674289 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | c747a256-6e0c-4969-b1bf-3b9f2f674289 | |
| relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |
