Publication:
Molecular modeling-based machine learning for accurate prediction of gas diffusivity and permeability in metal–organic frameworks

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorSezgin, Pelin
dc.contributor.kuauthorYungul, Feride Neva
dc.contributor.kuauthorKaraca, Beste Naz
dc.contributor.kuauthorGülbalkan, Hasan Can
dc.contributor.kuauthorKeskin, Seda
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:22:42Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractGas diffusion determines the performance of metal-organic frameworks (MOFs) in various practical applications, including membrane-based separations, yet its experimental measurement is challenging. We presented an efficient computational framework that integrates high-fidelity molecular dynamics (MD) simulations with machine learning (ML) to predict the diffusivities of CO2, N-2, O-2, CH4, and H-2 in >18,000 synthesized and hypothetical MOFs. ML models trained on MD data accurately predicted gas diffusivities of any given MOF within minutes using only easily accessible structural and guest-related properties. We provided an interactive, user-friendly web interface for predicting diffusivities of MOFs to facilitate material selection. Leveraging ML-predicted diffusivities, we evaluated membrane-based gas separation performances of all MOFs for seven industrially important separations: CO2/N-2, CO2/CH4, N-2/CH4, H-2/CO2, H-2/CH4, H-2/N-2, and O-2/N-2. The best MOF membranes offering high selectivity and permeability were identified and analyzed by using molecular fingerprinting to reveal the critical chemical properties for designing next-generation MOFs.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.openaccessgold
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipHORIZON EUROPE European Research Council [101124002]
dc.identifier.doi10.1021/acsmaterialsau.5c00111
dc.identifier.embargoNo
dc.identifier.grantno101124002
dc.identifier.issn2694-2461
dc.identifier.quartileQ2
dc.identifier.urihttps://doi.org/10.1021/acsmaterialsau.5c00111
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31673
dc.identifier.wos001615589200001
dc.keywordsMetal-organic framework
dc.keywordsMolecular simulation
dc.keywordsMachine learning
dc.keywordsDiffusion
dc.keywordsGas separation
dc.language.isoeng
dc.publisher American Chemical Society
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofACS Materials Au
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectChemistry
dc.subjectMaterials Science
dc.titleMolecular modeling-based machine learning for accurate prediction of gas diffusivity and permeability in metal–organic frameworks
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameSezgin
person.familyNameYungul
person.familyNameKaraca
person.familyNameGülbalkan
person.familyNameKeskin
person.givenNamePelin
person.givenNameFeride Neva
person.givenNameBeste Naz
person.givenNameHasan Can
person.givenNameSeda
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files