Publication:
Classification of ingestion sounds using Hilbert-Huang transform

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorTuran, Mehmet Ali Tuğtekin
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid34503
dc.date.accessioned2024-11-09T23:07:53Z
dc.date.issued2017
dc.description.abstractAutomatic classification of food ingestion gives a precise and objective solution for dietary monitoring which is an active research area. In this study, we aim to classify ingestion sounds of the six different food types recorded from the throat microphone. We observe that these records show a different energy distribution than normal speech signals. To reveal the characteristics of intake signals, we prefer a model that could reflect the energy distributions. Using the Hilbert-Huang transformation, we decompose the signal on the local time-scale. As a result of this hierarchical decomposition, zero-crossing rates and short-term energies are calculated for each component. These feature sets are then classified using the support vector machine classifier. After the experimental studies, a classification accuracy of 72% is obtained for the six-class classifier that indicates the proposed methodology is promising for further studies.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2017.7960505
dc.identifier.isbn9781-5090-6494-6
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026327866&doi=10.1109%2fSIU.2017.7960505&partnerID=40&md5=b8aee949a126866f76dd5b0f4159eaf9
dc.identifier.scopus2-s2.0-85026327866
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2017.7960505
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9225
dc.identifier.wos413813100368
dc.keywordsDietary monitoring
dc.keywordsHilbert-Huang decomposition
dc.keywordsThroat microphone
dc.keywordsWearable computing
dc.languageTurkish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source2017 25th Signal Processing and Communications Applications Conference, SIU 2017
dc.subjectAcoustics
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectComputer science
dc.subjectSoftware Electrical electronics engineering engineering
dc.titleClassification of ingestion sounds using Hilbert-Huang transform
dc.title.alternativeYeme-içme seslerinin Hilbert-Huang dönüşümü ile sınıflandırılması
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-3822-235X
local.contributor.authorid0000-0002-2715-2368
local.contributor.kuauthorTuran, Mehmet Ali Tuğtekin
local.contributor.kuauthorErzin, Engin
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files