Publication:
End-to-End Rate-Distortion Optimization for Bi-Directional Learned Video Compression

Placeholder

Program

KU Authors

Co-Authors

Advisor

Publication Date

2020

Language

English

Type

Conference proceeding

Journal Title

Journal ISSN

Volume Title

Abstract

Conventional video compression methods employ a linear transform and block motion model, and the steps of motion estimation, mode and quantization parameter selection, and entropy coding are optimized individually due to combinatorial nature of the end-to-end optimization problem. Learned video compression allows end-to-end rate-distortion optimized training of all nonlinear modules, quantization parameter and entropy model simultaneously. While previous work on learned video compression considered training a sequential video codec based on end-to-end optimization of cost averaged over pairs of successive frames, it is well-known in conventional video compression that hierarchical, bi-directional coding outperforms sequential compression. In this paper, we propose for the first time end-to-end optimization of a hierarchical, bi-directional motion compensated learned codec by accumulating cost function over fixed-size groups of pictures (GOP). Experimental results show that the rate-distortion performance of our proposed learned bi-directional GOP coder outperforms the state-of-the-art end-to-end optimized learned sequential compression as expected.

Description

Source:

2020 Ieee International Conference On Image Processing (Icip)

Publisher:

Ieee

Keywords:

Subject

Diagnostic imaging, Photography

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details