Publication:
Multicamera audio-visual analysis of dance figures

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorOfli, Ferda
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorYemez, Yücel
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-10T00:12:12Z
dc.date.issued2007
dc.description.abstractWe present an automated system for multicamera motion capture and audio-visual analysis of dance figures. the multiview video of a dancing actor is acquired using 8 synchronized cameras. the motion capture technique is based on 3D tracking of the markers attached to the person's body in the scene, using stereo color information without need for an explicit 3D model. the resulting set of 3D points is then used to extract the body motion features as 3D displacement vectors whereas MFC coefficients serve as the audio features. in the first stage of multimodal analysis, we perform Hidden Markov Model (HMM) based unsupervised temporal segmentation of the audio and body motion features, separately, to determine the recurrent elementary audio and body motion patterns. then in the second stage, we investigate the correlation of body motion patterns with audio patterns, that can be used for estimation and synthesis of realistic audio-driven body animation.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.isbn978-1-4244-1016-3
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-46449111503
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17614
dc.identifier.wos252357703088
dc.keywordsReal-time tracking
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof2007 IEEE international Conference on Multimedia and Expo, Vols 1-5
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectEngineering
dc.subjectElectrical and electronic engineering
dc.subjectImaging science
dc.subjectPhotographic technology
dc.titleMulticamera audio-visual analysis of dance figures
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorOfli, Ferda
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorYemez, Yücel
local.contributor.kuauthorTekalp, Ahmet Murat
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files