Publication:
An overview of the fundamentals of data management, analysis, and interpretation in quantitative research

dc.contributor.coauthorKotronoulas, Grigorios
dc.contributor.coauthorMiguel, Susana
dc.contributor.coauthorDowling, Maura
dc.contributor.coauthorFernandez-Ortega, Paz
dc.contributor.coauthorColomer-Lahiguera, Sara
dc.contributor.coauthorPape, Eva
dc.contributor.coauthorDrury, Amanda
dc.contributor.coauthorSemple, Cherith
dc.contributor.coauthorDieperink, Karin B.
dc.contributor.coauthorPapadopoulou, Constantina
dc.contributor.departmentSchool of Nursing
dc.contributor.kuauthorBağçivan, Gülcan
dc.contributor.schoolcollegeinstituteSCHOOL OF NURSING
dc.date.accessioned2025-01-19T10:28:53Z
dc.date.issued2023
dc.description.abstractObjectives: To provide an overview of three consecutive stages involved in the processing of quantitative research data (ie, data management, analysis, and interpretation) with the aid of practical examples to foster enhanced understanding.Data Sources: Published scientific articles, research textbooks, and expert advice were used.Conclusion: Typically, a considerable amount of numerical research data is collected that require analysis. On entry into a data set, data must be carefully checked for errors and missing values, and then variables must be defined and coded as part of data management. Quantitative data analysis involves the use of statistics. Descriptive statistics help summarize the variables in a data set to show what is typical for a sample. Meas-ures of central tendency (ie, mean, median, mode), measures of spread (standard deviation), and parameter estimation measures (confidence intervals) may be calculated. Inferential statistics aid in testing hypotheses about whether or not a hypothesized effect, relationship, or difference is likely true. Inferential statistical tests produce a value for probability, the P value. The P value informs about whether an effect, relationship, or difference might exist in reality. Crucially, it must be accompanied by a measure of magnitude (effect size) to help interpret how small or large this effect, relationship, or difference is. Effect sizes provide key informa-tion for clinical decision-making in health care.Implications for Nursing Practice: Developing capacity in the management, analysis, and interpretation of quantitative research data can have a multifaceted impact in enhancing nurses' confidence in understanding, evaluating, and applying quantitative evidence in cancer nursing practice.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue2
dc.description.openaccessGreen Published, hybrid, Green Accepted
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume39
dc.identifier.doi10.1016/j.soncn.2023.151398
dc.identifier.eissn1878-3449
dc.identifier.issn0749-2081
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85150284376
dc.identifier.urihttps://doi.org/10.1016/j.soncn.2023.151398
dc.identifier.urihttps://hdl.handle.net/20.500.14288/25775
dc.identifier.wos959447200001
dc.keywordsQuantitative studies
dc.keywordsData analysis
dc.keywordsData management
dc.keywordsInterpretation
dc.keywordsEmpirical research
dc.keywordsStatistics
dc.language.isoeng
dc.publisherElsevier Science Inc
dc.relation.ispartofSeminars in Oncology Nursing
dc.subjectOncology
dc.subjectNursing
dc.titleAn overview of the fundamentals of data management, analysis, and interpretation in quantitative research
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorBağçivan, Gülcan
local.publication.orgunit1SCHOOL OF NURSING
local.publication.orgunit2School of Nursing
relation.isOrgUnitOfPublicationcd883b5a-a59a-463b-9038-a0962a6b0749
relation.isOrgUnitOfPublication.latestForDiscoverycd883b5a-a59a-463b-9038-a0962a6b0749
relation.isParentOrgUnitOfPublication9781feb6-cb81-4c13-aeb3-97dae2048412
relation.isParentOrgUnitOfPublication.latestForDiscovery9781feb6-cb81-4c13-aeb3-97dae2048412

Files