Publication:
Compressed training based massive MIMO

dc.contributor.coauthorYılmaz, Baki Berkay
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorErdoğan, Alper Tunga
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid41624
dc.date.accessioned2024-11-09T13:56:16Z
dc.date.issued2019
dc.description.abstractMassive multiple-input-multiple-output (MIMO) scheme promises high spectral efficiency through the employment of large scale antenna arrays in base stations. In time division duplexed implementations, co-channel mobile terminals transmit training information such that base stations can estimate and exploit channel state information to spatially multiplex these users. In the conventional approach, the optimal choice for training length was shown to be equal to the number of users, K. In this paper, we propose a new semiblind framework, named as "MIMO Compressed Training," which utilizes information symbols in addition to training symbols for adaptive spatial multiplexing. We show that this framework enables us to reduce (compress) the training length down to a value close to log(2) (K), i.e., the logarithm of the number of users, without any sparsity assumptions on the channel matrix. We also derive a prescription for the required packet length for proper training. The framework is built upon some convex optimization settings that enable efficient and reliable algorithm implementations. The numerical experiments demonstrate the strong potential of the proposed approach in terms of increasing the number of users per cell and improving the link quality.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionAuthor's final manuscript
dc.description.volume67
dc.formatpdf
dc.identifier.doi10.1109/TSP.2018.2890374
dc.identifier.eissn1941-0476
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01894
dc.identifier.issn1053-587X
dc.identifier.linkhttps://doi.org/10.1109/TSP.2018.2890374
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85060007493
dc.identifier.urihttps://hdl.handle.net/20.500.14288/4049
dc.identifier.wos455721400006
dc.keywordsMassive MIMO
dc.keywordsCompressed training
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno1.79769313486232E+308
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8582
dc.sourceIEEE Transactions on Signal Processing
dc.subjectEngineering, electrical and electronic
dc.titleCompressed training based massive MIMO
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-0876-2897
local.contributor.kuauthorErdoğan, Alper Tunga
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8582.pdf
Size:
840 KB
Format:
Adobe Portable Document Format