Publication:
Computational screening of metal-organic frameworks for membrane-based CO2/N-2/H2O separations: best materials for flue gas separation

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorHarman, Hilal Dağlar
dc.contributor.kuauthorKeskin, Seda
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T11:47:18Z
dc.date.issued2018
dc.description.abstractIt has become a significant challenge to select the best metal-organic frameworks (MOFs) for membrane-based gas separations because the number of synthesized MOFs is growing exceptionally fast. In this work, we used high-throughput computational screening to identify the top MOF membranes for flue gas separation. Grand canonical Monte Carlo and molecular dynamics simulations were performed to assess adsorption and diffusion properties of CO2 and N-2 in 3806 different MOFs. Using these data, selectivities and permeabilities of MOF membranes were predicted and compared with those of conventional membranes, polymers, and zeolites. The best performing MOF membranes offering CO2/N-2 selectivity > 350 and CO2 permeability > 10(6 )Barrer were identified. Ternary CO2/N-2 /H2O mixture simulations were then performed for the top MOFs to unlock their potential under industrial operating conditions, and results showed that the presence of water decreases CO2/N-2 selectivity and CO2 permeability of some MOF membranes. As a result of this stepwise screening procedure, the number of promising MOF membranes to be investigated for flue gas separation in future experimental studies was narrowed down from thousands to tens. We finally examined the structure-performance relations of MOFs to understand which properties lead to the greatest promise for flue gas separation and concluded that lanthanide-based MOFs with narrow pore openings (<4.5 (A)under-circle), low porosities (<0.75), and low surface areas (<1000 m(2)/g) are the best materials for membrane-based CO2/N-2 separations.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue30
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipH2020
dc.description.sponsorshipEuropean Research Council (ERC)-2017-Starting Grant
dc.description.sponsorshipCOSMOS
dc.description.versionPublisher version
dc.description.volume122
dc.identifier.doi10.1021/acs.jpcc.8b05416
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01434
dc.identifier.issn1932-7447
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85049626161
dc.identifier.urihttps://doi.org/10.1021/acs.jpcc.8b05416
dc.identifier.wos440956200037
dc.keywordsZeolitic imidazolate frameworks
dc.keywordsMolecular-dynamics simulations
dc.keywordsVapor-liquid-equilibria
dc.keywordsCarbon-dioxide
dc.keywordsCH4/H-2 separations
dc.keywordsCapture properties
dc.keywordsMOF membranes
dc.keywordsForce-field
dc.keywordsCO2
dc.keywordsAdsorption
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.grantno756489
dc.relation.grantnoCOSMOS
dc.relation.ispartofJournal of Physical Chemistry C
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8096
dc.subjectChemistry
dc.subjectScience and technology
dc.subjectMaterials science
dc.titleComputational screening of metal-organic frameworks for membrane-based CO2/N-2/H2O separations: best materials for flue gas separation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorHarman, Hilal Dağlar
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8096.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format