Publication:
Transfer learning for low-resource neural machine translation

dc.contributor.coauthorZoph, Barret
dc.contributor.coauthorMay, Jonathan
dc.contributor.coauthorKnight, Kevin
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYüret, Deniz
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid179996
dc.date.accessioned2024-11-09T12:25:05Z
dc.date.issued2016
dc.description.abstractThe encoder-decoder framework for neural machine translation (NMT) has been shown effective in large data scenarios, but is much less effective for low-resource languages. We present a transfer learning method that significantly improves BLEU scores across a range of low-resource languages. Our key idea is to first train a high-resource language pair (the parent model), then transfer some of the learned parameters to the low-resource pair (the child model) to initialize and constrain training. Using our transfer learning method we improve baseline NMT models by an average of 5.6 BLEU on four low-resource language pairs. Ensembling and unknown word replacement add another 2 BLEU which brings the NMT performance on low-resource machine translation close to a strong syntax based machine translation (SBMT) system, exceeding its performance on one language pair. Additionally, using the transfer learning model for re-scoring, we can improve the SBMT system by an average of 1.3 BLEU, improving the state-of-the-art on low-resource machine translation.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipARL/ARO
dc.description.sponsorshipDARPA
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.18653/v1/D16-1163
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01959
dc.identifier.isbn9781945626258
dc.identifier.linkhttps://doi.org/10.18653/v1/D16-1163
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85072838695
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1538
dc.keywordsComputational linguistics
dc.keywordsComputer aided language translation
dc.keywordsNatural language processing systems
dc.languageEnglish
dc.publisherAssociation for Computational Linguistics (ACL)
dc.relation.grantnoW911NF-10-1-0533
dc.relation.grantnoHR0011-15-C-0115
dc.relation.grantno114E628 and 215E201
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8511
dc.sourceProceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
dc.subjectComputer engineering
dc.subjectLearning systems
dc.titleTransfer learning for low-resource neural machine translation
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7039-0046
local.contributor.kuauthorYüret, Deniz
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8511.pdf
Size:
248.14 KB
Format:
Adobe Portable Document Format