Publication:
Co-sensitization of Copper Indium Gallium Disulfide and Indium Sulfide on Zinc Oxide nanostructures: effect of morphology in electrochemical carbon dioxide reduction

dc.contributor.coauthorAltaf, Cigdem Tuc
dc.contributor.coauthorColak, Tuluhan Olcayto
dc.contributor.coauthorKaragoz, Emine
dc.contributor.coauthorWang, Jiayi
dc.contributor.coauthorLiu, Ya
dc.contributor.coauthorChen, Yubin
dc.contributor.coauthorLiu, Maochang
dc.contributor.coauthorSankir, Nurdan Demirci
dc.contributor.coauthorSankir, Mehmet
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorÜnal, Uğur
dc.contributor.otherDepartment of Chemistry
dc.contributor.researchcenterKoç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM)
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-12-29T09:36:04Z
dc.date.issued2024
dc.description.abstractRecent advances in nanoparticle materials can facilitate the electro-reduction of carbon dioxide (CO2) to form valuable products with high selectivity. Copper (Cu)-based electrodes are promising candidates to drive efficient and selective CO2 reduction. However, the application of Cu-based chalcopyrite semiconductors in the electrocatalytic reduction of CO2 is still limited. This study demonstrated that novel zinc oxide (ZnO)/copper indium gallium sulfide (CIGS)/indium sulfide (InS) heterojunction electrodes could be used in effective CO2 reduction for formic acid production. It has been determined that Faradaic efficiencies for formic acid production using ZnO nanowire (NW) and nanoflower (NF) structures vary due to structural and morphological differences. A ZnO NW/CIGS/InS heterojunction electrode resulted in the highest efficiency of 77.2% and 0.35 mA cm-2 of current density at a −0.24 V (vs. reversible hydrogen electrode) bias potential. Adding a ZTO intermediate layer by the spray pyrolysis method decreased the yield of formic acid and increased the yield of H2. Our work offers a new heterojunction electrode for efficient formic acid production via cost-effective and scalable CO2 reduction. © 2024 The Authors. Published by American Chemical Society.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue17
dc.description.openaccessAll Open Access
dc.description.openaccessGold Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsN.D.S., M.S., and C.T.A. would like to thank TUBITAK for financial support under grant number 118C551. Y.C. would like to thank the financial support from the Key Research and Development Program of Shaanxi (no. 2024GH-YBXM-02).
dc.description.volume9
dc.identifier.doi10.1021/acsomega.4c00018
dc.identifier.issn2470-1343
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85191321587
dc.identifier.urihttps://doi.org/10.1021/acsomega.4c00018
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21931
dc.identifier.wos1242239500001
dc.keywordsElectrolytic reduction
dc.keywordsElectrocatalyst
dc.keywordsConversion
dc.languageen
dc.publisherAmerican Chemical Society
dc.sourceACS Omega
dc.subjectChemistry, multidisciplinary
dc.titleCo-sensitization of Copper Indium Gallium Disulfide and Indium Sulfide on Zinc Oxide nanostructures: effect of morphology in electrochemical carbon dioxide reduction
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorÜnal, Uğur
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files