Publication:
Global stabilization of the navier-stokes-voight and the damped nonlinear wave equations by finite number of feedback controllers

dc.contributor.coauthorTiti, Edriss S.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKalantarov, Varga
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T22:52:01Z
dc.date.issued2018
dc.description.abstractIn this paper we introduce a finite-parameters feedback control algorithm for stabilizing solutions of the Navier-Stokes-Voigt equations, the strongly damped nonlinear wave equations and the nonlinear wave equation with nonlinear damping term, the Benjamin-Bona-Mahony-Burgers equation and the KdV-Burgers equation. This algorithm capitalizes on the fact that such infinite-dimensional dissipative dynamical systems posses finite-dimensional long-time behavior which is represented by, for instance, the finitely many determining parameters of their long-time dynamics, such as determining Fourier modes, determining volume elements, determining nodes, etc..The algorithm utilizes these finite parameters in the form of feedback control to stabilize the relevant solutions. For the sake of clarity, and in order to fix ideas, we focus in this work on the case of low Fourier modes feedback controller, however, our results and tools are equally valid for using other feedback controllers employing other spatial coarse mesh interpolants.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue3
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipONR grant [N00014-15-1-2333] V.K.Kalantarov would like to thank the Weizmann Institute of Science for the generous hospitality during which this work was initiated. E.S.Titi would like to thank the ICERM, Brown University, for the warm and kind hospitality where this work was completed. The work of E.S.Titi was supported in part by the ONR grant N00014-15-1-2333.
dc.description.volume23
dc.identifier.doi10.3934/dcdsb.2018153
dc.identifier.eissn1553-524X
dc.identifier.issn1531-3492
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85043343357
dc.identifier.urihttps://doi.org/10.3934/dcdsb.2018153
dc.identifier.urihttps://hdl.handle.net/20.500.14288/6952
dc.identifier.wos431856600016
dc.keywordsDamped wave equation
dc.keywordsNavier - stokes equations
dc.keywordsStrongly damped wave equation
dc.keywordsFeedback control
dc.keywordsStabilization
dc.keywordsFinite number feedback controllers dissipative systems
dc.keywordsInternal stabilization
dc.keywordsDetermining modes
dc.keywordsDimensional controllers
dc.keywordsBoundary stabilization
dc.keywordsDetermining parameters
dc.keywordsUniform stabilization
dc.keywordsAttractors
dc.keywordsRegularity
dc.keywordsBehavior
dc.language.isoeng
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-Series B
dc.subjectMathematics, applied
dc.titleGlobal stabilization of the navier-stokes-voight and the damped nonlinear wave equations by finite number of feedback controllers
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKalantarov, Varga
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files