Publication:
In situ sensing physiological properties of biological tissues using wireless miniature soft robots

dc.contributor.coauthorWang, Chunxiang
dc.contributor.coauthorWu, Yingdan
dc.contributor.coauthorDong, Xiaoguang
dc.contributor.coauthorArmacki, Milena
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.date.accessioned2024-12-29T09:40:33Z
dc.date.issued2023
dc.description.abstractImplanted electronic sensors, compared with conventional medical imaging, allow monitoring of advanced physiological properties of soft biological tissues continuously, such as adhesion, pH, viscoelasticity, and biomarkers for disease diagnosis. However, they are typically invasive, requiring being deployed by surgery, and frequently cause inflammation. Here we propose a minimally invasive method of using wireless miniature soft robots to in situ sense the physiological properties of tissues. By controlling robot-tissue interaction using external magnetic fields, visualized by medical imaging, we can recover tissue properties precisely from the robot shape and magnetic fields. We demonstrate that the robot can traverse tissues with multimodal locomotion and sense the adhesion, pH, and viscoelasticity on porcine and mice gastrointestinal tissues ex vivo, tracked by x-ray or ultrasound imaging. With the unprecedented capability of sensing tissue physiological properties with minimal invasion and high resolution deep inside our body, this technology can potentially enable critical applications in both basic research and clinical practice.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue23
dc.description.openaccessgold, Green Accepted, Green Published
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorsThis work was funded by the Max Planck Society, European Research Council (ERC) Advanced Grant SoMMoR project with grant no. 834531, German Research Foundation (DFG) Soft Material Robotic Systems (SPP 2100) Program with grant no. 2197/5-1, and the Max Planck Queensland Center. Y.W. thanks the Alexander von Humboldt Foundation for financial support.
dc.description.volume9
dc.identifier.doi10.1126/sciadv.adg3988
dc.identifier.issn2375-2548
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85161228940
dc.identifier.urihttps://doi.org/10.1126/sciadv.adg3988
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23373
dc.identifier.wos1010557200005
dc.keywordsAnimals
dc.keywordsEquipment design
dc.keywordsLocomotion
dc.keywordsMice
dc.keywordsRobotics
dc.keywordsSwine
dc.keywordsTechnology
dc.languageen
dc.publisherAmer Assoc Advancement Science
dc.relation.grantnoMax Planck Society
dc.relation.grantnoEuropean Research Council (ERC) Advanced Grant SoMMoR project [834531]
dc.relation.grantnoGerman Research Foundation (DFG) Soft Material Robotic Systems (SPP 2100) Program [2197/5-1]
dc.relation.grantnoMax Planck Queensland Center
dc.relation.grantnoAlexander von Humboldt Foundation
dc.sourceScience Advances
dc.subjectMultidisciplinary sciences
dc.titleIn situ sensing physiological properties of biological tissues using wireless miniature soft robots
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files