Publication:
Synthetic data-assisted miniature medical robot navigation via ultrasound imaging

dc.contributor.coauthorWang, Chunxiang
dc.contributor.coauthorWang, Tianlu
dc.contributor.departmentSchool of Medicine
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-09-10T04:58:17Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractWireless miniature robots are promising for minimally invasive biomedical applications. Effective tracking and navigation are essential for their safe deployment, but challenges persist in medical imaging and robot control, especially in localizing the robot in complex imaging scenes. Deep learning, though powerful for object identification, requires large supervised datasets, limiting its clinical applications due to the difficulty and cost of acquiring realistic data. Furthermore, miniature robots frequently exit the field of view of imaging systems, hindering continuous observation. Here, we present a framework for real-time magnetic navigation of wireless miniature robots using ultrasound imaging, leveraging synthetic data generation for deep learning-based detection. First, artificially generated synthetic data is combined with real data from synthetic materials to train a neural network capable of detecting versatile robots in real tissues. Then, a robotic system is developed to automatically track the robot with an ultrasound probe during magnetic actuation in tortuous lumens. With 85% less human-labeled data within synthetic materials, our approach effectively detects versatile robots in ex-vivo tissues, reducing data scarcity, imbalance, and manual labeling burdens. Demonstrations of automatic robot navigation through tortuous lumens in complex ultrasound scenes validate its effectiveness, enhancing the safe applicability of miniature medical robots in complex environments.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipMax Planck Queensland Center for the Materials Science of Extracellular Matrices; Max Planck Society; European Research Council (ERC) Advanced Grant SoMMoR Project [834531]; University of Hawai'i at Manoa
dc.description.versionPublished Version
dc.identifier.doi10.1109/TMECH.2025.3583020
dc.identifier.eissn1941-014X
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06487
dc.identifier.issn1083-4435
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105010953500
dc.identifier.urihttps://doi.org/10.1109/TMECH.2025.3583020
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30320
dc.identifier.wos001531913000001
dc.keywordsRobots
dc.keywordsRobot kinematics
dc.keywordsUltrasonic imaging
dc.keywordsLumen
dc.keywordsSynthetic data
dc.keywordsTraining
dc.keywordsNavigation
dc.keywordsMagnetic resonance imaging
dc.keywordsBiomedical imaging
dc.keywordsProbes
dc.keywordsMedical robotic systems
dc.keywordsSynthetic data-assisted neural network training
dc.keywordsUltrasound imaging-based control
dc.language.isoeng
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofIEEE-Asme Transactions on Mechatronics
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAutomation and control systems
dc.subjectEngineering, manufacturing
dc.subjectEngineering, electrical and electronic
dc.subjectEngineering, mechanical
dc.titleSynthetic data-assisted miniature medical robot navigation via ultrasound imaging
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameSitti
person.givenNameMetin
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06487.pdf
Size:
26.23 MB
Format:
Adobe Portable Document Format