Publication:
Ground-state cooling of mechanical resonatorsby quantum reservoir engineering

dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuauthorNaseem, Muhammad Tahir
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid1674
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T13:52:17Z
dc.date.issued2021
dc.description.abstractCooling a mechanical oscillator to its ground state underpins many applications ranging from ultra-precise sensing to quantum information processing. The authors propose a new scheme that addresses the problem of the simultaneous cooling of many mechanical resonators with nearby frequencies. Ground-state cooling of multiple mechanical resonators becomes vital to employ them in various applications ranging from ultra-precise sensing to quantum information processing. Here we propose a scheme for simultaneous cooling of multiple degenerate or near-degenerate mechanical resonators to their quantum ground-state, which is otherwise a challenging goal to achieve. As opposed to standard laser cooling schemes where coherence renders the motion of a resonator to its ground-state, we consider an incoherent thermal source to achieve the same aim. The underlying physical mechanism of cooling is explained by investigating a direct connection between the laser sideband cooling and ""cooling by heating"". Our advantageous scheme of cooling enabled by quantum reservoir engineering can be realized in various setups, employing parametric coupling of a cooling agent with the target systems. We also discuss using non-thermal baths to simulate ultra-high temperature thermal baths for cooling.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipKU Graduate Scholarship Program
dc.description.versionPublisher version
dc.description.volume4
dc.formatpdf
dc.identifier.doi10.1038/s42005-021-00599-z
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02935
dc.identifier.issn2399-3650
dc.identifier.linkhttps://doi.org/10.1038/s42005-021-00599-z
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85105803185
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3977
dc.identifier.wos649710100001
dc.keywordsCavity
dc.keywordsOscillator
dc.keywordsCircuit
dc.keywordsLimit
dc.keywordsWork
dc.languageEnglish
dc.publisherSpringer Nature
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9574
dc.sourceCommunications Physics
dc.subjectPhysics
dc.titleGround-state cooling of mechanical resonatorsby quantum reservoir engineering
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9134-3951
local.contributor.authoridN/A
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.contributor.kuauthorNaseem, Muhammad Tahir
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9574.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format