Publication:
AUC maximization in Bayesian hierarchical models

dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorGönen, Mehmet
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid237468
dc.date.accessioned2024-11-09T13:23:41Z
dc.date.issued2016
dc.description.abstractThe area under the curve (AUC) measures such as the area under the receiver operating characteristics curve (AUROC) and the area under the precision-recall curve (AUPR) are known to be more appropriate than the error rate, especially, for imbalanced data sets. There are several algorithms to optimize AUC measures instead of minimizing the error rate. However, this idea has not been fully exploited in Bayesian hierarchical models owing to the difficulties in inference. Here, we formulate a general Bayesian inference framework, called Bayesian AUC Maximization (BAM), to integrate AUC maximization into Bayesian hierarchical models by borrowing the pairwise and listwise ranking ideas from the information retrieval literature. To showcase our BAM framework, we develop two Bayesian linear classifier variants for two ranking approaches and derive their variational inference procedures. We perform validation experiments on four biomedical data sets to demonstrate the better predictive performance of our framework over its error-minimizing counterpart in terms of average AUROC and AUPR values.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.3233/978-1-61499-672-9-21
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01051
dc.identifier.isbn978-1-61499-672-9
dc.identifier.isbn978-1-61499-671-2
dc.identifier.issn0922-6389
dc.identifier.linkhttps://doi.org/10.3233/978-1-61499-672-9-21
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85013042405
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3381
dc.identifier.wos385793700004
dc.keywordsArtificial intelligence
dc.languageEnglish
dc.publisherIOS Press
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/5629
dc.sourceFrontiers in Artificial Intelligence and Applications
dc.subjectComputer science
dc.titleAUC maximization in Bayesian hierarchical models
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2483-075X
local.contributor.kuauthorGönen, Mehmet
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
5629.pdf
Size:
337.93 KB
Format:
Adobe Portable Document Format