Publication:
A binarization strategy for modelling mixed data in multigroup classification

dc.contributor.coauthorMasmoudi, Youssef
dc.contributor.coauthorChabchoub, Habib
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorTürkay, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid24956
dc.date.accessioned2024-11-10T00:10:24Z
dc.date.issued2013
dc.description.abstractThis paper presents a binarization pre-processing strategy for mixed datasets. We propose that the use of binary attributes for representing nominal and integer data is beneficial for classification accuracy. We also describe a procedure to convert integer and nominal data into binary attributes. Expectation-Maximization (EM) clustering algorithms was applied to classify the values of the attributes with a wide range to use a small number of binary attributes. Once the data set is pre-processed, we use the Support Vector Machine (LibSVM) for classification. The proposed method was tested on datasets from the literature. We demonstrate the improved accuracy and efficiency of presented binarization strategy for modelling mixed and complex data in comparison to the classification of the original dataset, nominal dataset and binary dataset.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipL'ELECTRODE
dc.description.sponsorshipTUNISAIR
dc.identifier.doi10.1109/ICAdLT.2013.6568483
dc.identifier.isbn9781-4799-0312-2
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84883406797&doi=10.1109%2fICAdLT.2013.6568483&partnerID=40&md5=64fa518125304e009034733e33a9ca30
dc.identifier.scopus2-s2.0-84883406797
dc.identifier.urihttp://dx.doi.org/10.1109/ICAdLT.2013.6568483
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17286
dc.keywordsClassification
dc.keywordsClustering of attribute values
dc.keywordsExpectation-Maximization algorithm (EM)
dc.keywordsFeature binarization
dc.keywordsPre-processing data
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source2013 International Conference on Advanced Logistics and Transport, ICALT 2013
dc.subjectElectrical electronics engineering
dc.subjectOperations research
dc.subjectManagement science
dc.subjectTransportation
dc.subjectTechnology
dc.titleA binarization strategy for modelling mixed data in multigroup classification
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-4769-6714
local.contributor.kuauthorTürkay, Metin
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files