Publication:
Localized X-ray photoelectron impedance spectroscopy (LoXPIS) for capturing charge dynamics of an ionic liquid electrolyte within an energy storage device

dc.contributor.coauthorÖz, Erdinç
dc.contributor.coauthorErgöktaş, Said
dc.contributor.coauthorKocabaş, Coşkun
dc.contributor.coauthorUlgut, Burak
dc.contributor.coauthorSüzer, Şefik
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorBaşaran, Mustafa
dc.contributor.kuauthorKocabaş, Aşkın
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Physics
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.contributor.yokid227753
dc.date.accessioned2024-11-09T23:38:49Z
dc.date.issued2022
dc.description.abstractMany electrochemical devices are based on the fundamental process of ion migration and accumulation on surfaces. Complex interplay of molecular properties of ions and device dimensions control the entire process and define the overall dynamics of the system. Particularly, for ionic liquid-based electrolytes it is often not clear which property, and to what extent, contributes to the overall performance of the device. Herein we use X-ray photoelectron spectroscopy (XPS) while the device is under electrical bias. Such a procedure reveals localized electrical potential developments, through binding energy shifts of the atomic core levels, in a chemically specific fashion. Combining it with square-wave AC modulation, the information can also be extended to time domain, and we investigate devices configured as a coplanar capacitor, with an ionic liquid as the electrolyte, in macro-dimensions. Our analysis reveals that a nonlinear voltage profile across the device emerges from spatially non-uniform electrical double layer formation on electrode surfaces. Interestingly the coplanar capacitor has an extremely slow time response which is particularly controlled by IL film thickness. XPS measurements can capture the ion dynamics in the tens of seconds to microseconds range, and reveal that ionic motion is all over the device, including on metallic electrode regions. This behavior can only be attributed to motion in more than one dimension. The ion dynamics can also be faithfully simulated by using a modified PNP equation, taking into account steric effects, and device dimensions. XPS measurements on two devices with different dimensions corroborated and validated the simulation results. The present results propose a new experimental approach and provide new insights into the dynamics of ions across electrochemical devices.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue0
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume236
dc.identifier.doi10.1039/d1fd00102g
dc.identifier.eissn1364-5498
dc.identifier.issn1359-6640
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85137124991
dc.identifier.urihttp://dx.doi.org/10.1039/d1fd00102g
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13003
dc.identifier.wos790370100001
dc.languageEnglish
dc.sourceFaraday Discussions
dc.subjectChemistry
dc.titleLocalized X-ray photoelectron impedance spectroscopy (LoXPIS) for capturing charge dynamics of an ionic liquid electrolyte within an energy storage device
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-1895-254X
local.contributor.authorid0000-0002-6930-1202
local.contributor.kuauthorBaşaran, Mustafa
local.contributor.kuauthorKocabaş, Aşkın
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files