Publication:
Quenched-vacancy induced spin-glass order

Thumbnail Image

Organizational Units

Program

KU Authors

Co-Authors

Gülpınar, Gül

Advisor

Publication Date

2009

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

The ferromagnetic phase of an Ising model in d=3, with any amount of quenched antiferromagnetic bond randomness, is shown to undergo a transition to a spin-glass phase under sufficient quenched bond dilution. This result, demonstrated here with the numerically exact global renormalization-group solution of a d=3 hierarchical lattice, is expected to hold true generally, for the cubic lattice and for quenched site dilution. Conversely, in the ferromagnetic-spin-glass-antiferromagnetic phase diagram, the spin-glass phase expands under quenched dilution at the expense of the ferromagnetic and antiferromagnetic phases. In the ferromagnetic-spin-glass phase transition induced by quenched dilution, reentrance as a function of temperature is seen, as previously found in the ferromagnetic-spin-glass transition induced by increasing the antiferromagnetic bond concentration.

Description

Source:

Physical Review E

Publisher:

American Physical Society (APS)

Keywords:

Subject

Physics

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details