Publication:
Emotion dependent facial animation from affective speech

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorAsadiabadi, Sasan
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorSadiq, Rizwan
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T11:49:08Z
dc.date.issued2020
dc.description.abstractIn human-to-computer interaction, facial animation in synchrony with affective speech can deliver more naturalistic conversational agents. In this paper, we present a two-stage deep learning approach for affective speech driven facial shape animation. In the first stage, we classify affective speech into seven emotion categories. In the second stage, we train separate deep estimators within each emotion category to synthesize facial shape from the affective speech. Objective and subjective evaluations are performed over the SAVEE dataset. The proposed emotion dependent facial shape model performs better in terms of the Mean Squared Error (MSE) loss and in generating the landmark animations, as compared to training a universal model regardless of the emotion.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionAuthor's final manuscript
dc.identifier.doi10.1109/MMSP48831.2020.9287086
dc.identifier.eissn2473-3628
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02688
dc.identifier.isbn9781728193205
dc.identifier.issn2163-3517
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85099256959
dc.identifier.urihttps://hdl.handle.net/20.500.14288/634
dc.keywordsTraining
dc.keywordsVisualization
dc.keywordsShape
dc.keywordsTraining data
dc.keywordsSpeech recognition
dc.keywordsFacial animation
dc.keywordsSpeech processing
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno2.17E+109
dc.relation.ispartof2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9334
dc.subjectMultimedia signal processing
dc.titleEmotion dependent facial animation from affective speech
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorSadiq, Rizwan
local.contributor.kuauthorAsadiabadi, Sasan
local.contributor.kuauthorErzin, Engin
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9334.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format