Publication:
Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces

dc.contributor.coauthorWu, Y.
dc.contributor.coauthorDong, X.
dc.contributor.coauthorKim, J.K.
dc.contributor.coauthorWang, C.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T12:24:59Z
dc.date.issued2022
dc.description.abstractWireless soft-bodied robots at the millimeter scale allow traversing very confined unstructured terrains with minimal invasion and safely interacting with the surrounding environment. However, existing untethered soft millirobots still lack the ability of climbing, reversible controlled surface adhesion, and long-term retention on unstructured three-dimensional (3D) surfaces, limiting their use in biomedical and environmental applications. Here, we report a fundamental peeling-and-loading mechanism to allow untethered soft-bodied robots to climb 3D surfaces by using both the soft-body deformation and whole-body motion of the robot under external magnetic fields. This generic mechanism is implemented with different adhesive robot footpad designs, allowing vertical and inverted surface climbing on diverse 3D surfaces with complex geometries and different surface properties. With the unique robot footpad designs that integrate microstructured adhesives and tough bioadhesives, the soft climbing robot could achieve controllable adhesion and friction to climb 3D soft and wet surfaces including porcine tissues, which paves the way for future environmental inspection and minimally invasive medicine applications.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue21
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC) Advanced Grant
dc.description.sponsorshipSoMMoR Project
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipGerman Research Foundation (DFG)
dc.description.sponsorshipSoft Material Robotic Systems (SPP 2100) Program
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.versionPublisher version
dc.description.volume8
dc.identifier.doi10.1126/sciadv.abn3431
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03697
dc.identifier.issn2375-2548
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85131108476
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1521
dc.identifier.wos802745600026
dc.keywords3D surface
dc.keywordsConfined space
dc.language.isoeng
dc.publisherAmerican Association for the Advancement of Science (AAAS)
dc.relation.grantno834531
dc.relation.grantno2197/3-1
dc.relation.ispartofScience Advances
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10558
dc.subjectScience and technology
dc.titleWireless soft millirobots for climbing three-dimensional surfaces in confined spaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10558.pdf
Size:
9.94 MB
Format:
Adobe Portable Document Format