Publication:
Cortical spreading depression can be triggered by sensory stimulation in primed wild type mouse brain: a mechanistic insight to migraine aura generation

dc.contributor.coauthorHanalioğlu, Şahin
dc.contributor.coauthorSağ, Aslıhan Taşkıran
dc.contributor.coauthorKarataş, Hülya
dc.contributor.coauthorDemir, Buket Dönmez
dc.contributor.coauthorÖzcan, Sinem Yılmaz
dc.contributor.coauthorKoçak, Emine Eren
dc.contributor.coauthorDalkara, Turgay
dc.contributor.kuauthorÖzdemir, Yasemin Gürsoy
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid170592
dc.date.accessioned2024-11-09T13:07:20Z
dc.date.issued2022
dc.description.abstractBackground: unlike the spontaneously appearing aura in migraineurs, experimentally, cortical spreading depression (CSD), the neurophysiological correlate of aura is induced by non-physiological stimuli. Consequently, neural mechanisms involved in spontaneous CSD generation, which may provide insight into how migraine starts in an otherwise healthy brain, remain largely unclear. We hypothesized that CSD can be physiologically induced by sensory stimulation in primed mouse brain. Methods: cortex was made susceptible to CSD with partial inhibition of Na+/K+-ATPase by epidural application of a low concentration of Na+/K+-ATPase blocker ouabain, allowing longer than 30-min intervals between CSDs or by knocking-down ?2 subunit of Na+/K+-ATPase, which is crucial for K+ and glutamate re-uptake, with shRNA. Stimulation-triggered CSDs and extracellular K+ changes were monitored in vivo electrophysiologically and a K+-sensitive fluoroprobe (IPG-4), respectively. Results: after priming with ouabain, photic stimulation significantly increased the CSD incidence compared with non-stimulated animals (44.0 vs. 4.9%, p < 0.001). Whisker stimulation also significantly increased the CSD incidence, albeit less effectively (14.9 vs. 2.4%, p = 0.02). Knocking-down Na+/K+-ATPase (50% decrease in mRNA) lowered the CSD threshold in all mice tested with KCl but triggered CSDs in 14.3% and 16.7% of mice with photic and whisker stimulation, respectively. Confirming Na+/K+-ATPase hypofunction, extracellular K+ significantly rose during sensory stimulation after ouabain or shRNA treatment unlike controls. In line with the higher CSD susceptibility observed, K+ rise was more prominent after ouabain. To gain insight to preventive mechanisms reducing the probability of stimulus-evoked CSDs, we applied an A1-receptor antagonist (DPCPX) to the occipital cortex, because adenosine formed during stimulation from ATP can reduce CSD susceptibility. DPCPX induced spontaneous CSDs but only small-DC shifts along with suppression of EEG spikes during photic stimulation, suggesting that the inhibition co-activated with sensory stimulation could limit CSD ignition when K+ uptake was not sufficiently suppressed as with ouabain. Conclusions: normal brain is well protected against CSD generation. For CSD to be ignited under physiological conditions, priming and predisposing factors are required as seen in migraine patients. Intense sensory stimulation has potential to trigger CSD when co-existing conditions bring extracellular K+ and glutamate concentrations over CSD-ignition threshold and stimulation-evoked inhibitory mechanisms are overcome.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipHacettepe University Scientifc Research Projects Unit
dc.description.versionPublisher version
dc.description.volume23
dc.formatpdf
dc.identifier.doi10.1186/s10194-022-01474-0
dc.identifier.eissn1129-2377
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03767
dc.identifier.issn1129-2369
dc.identifier.linkhttps://doi.org/10.1186/s10194-022-01474-0
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85136937965
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2582
dc.identifier.wos842037300001
dc.keywordsCortical spreading depression
dc.keywordsOuabain
dc.keywordsAsante Potassium Green-4
dc.keywordsPhotic stimulation
dc.keywordsWhisker stimulation
dc.keywordsMigraine
dc.languageEnglish
dc.publisherBioMed Central
dc.relation.grantno113S211
dc.relation.grantno014-D01-105-002
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10623
dc.sourceJournal Of Headache and Pain
dc.subjectClinical neurology
dc.subjectNeurosciences
dc.titleCortical spreading depression can be triggered by sensory stimulation in primed wild type mouse brain: a mechanistic insight to migraine aura generation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-0860-8964
local.contributor.kuauthorÖzdemir, Yasemin Gürsoy

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10623.pdf
Size:
4.6 MB
Format:
Adobe Portable Document Format