Publication:
Microrobotics and microorganisms: biohybrid autonomous cellular robots

dc.contributor.coauthorAlapan, Yunus
dc.contributor.coauthorYasa, Oncay
dc.contributor.coauthorYigit, Berk
dc.contributor.coauthorYasa, I. Ceren
dc.contributor.coauthorErkoc, Pelin
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-10T00:00:09Z
dc.date.issued2019
dc.description.abstractBiohybrid microrobots, composed of a living organism integrated with an artificial carrier, offer great advantages for the miniaturization of devices with onboard actuation, sensing, and control functionalities and can perform multiple tasks, including manipulation, cargo delivery, and targeting, at nano- and microscales. Over the past decade, various microorganisms and artificial carriers have been integrated to develop unique biohybrid microrobots that can swim or crawl inside the body, in order to overcome the challenges encountered by the current cargo delivery systems. Here, we first focus on the locomotion mechanisms of microorganisms at the microscale, crucial criteria for the selection of biohybrid microrobot components, and the integration of the selected artificial and biological components using various physical and chemical techniques. We then critically review biohybrid microrobots that have been designed and used to perform specific tasks in vivo. Finally, we discuss key challenges, including fabrication efficiency, swarm manipulation, in vivo imaging, and immunogenicity, that should be overcome before biohybrid microrobots transition to clinical use.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThis work is funded by the Max Planck Society. Y.A. thanks the Alexander von Humboldt Foundation for the Humboldt Postdoctoral Research Fellowship.
dc.description.volume2
dc.identifier.doi10.1146/annurev-control-053018-023803
dc.identifier.scopus2-s2.0-85063588069
dc.identifier.urihttp://dx.doi.org/10.1146/annurev-control-053018-023803
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15759
dc.identifier.wos467686900009
dc.keywordsBiohybrid microrobots
dc.keywordsBacteria
dc.keywordsNeutrophils
dc.keywordsArtificial carriers
dc.keywordsMagnetic control
dc.keywordsCargo delivery bacteria-driven microswimmers
dc.keywordsMagnetotactic bacteria
dc.keywordsLeukocyte migration
dc.keywordsEscherichia-coli
dc.keywordsSwimming speed
dc.keywordsSperm
dc.keywordsDelivery
dc.keywordsNanoparticles
dc.keywordsSurface
dc.keywordsMotility
dc.languageEnglish
dc.publisherAnnual Reviews
dc.sourceAnnual Review Of Control, Robotics, And Autonomous Systems, Vol 2
dc.subjectAutomation
dc.subjectControl systems
dc.subjectRobotics
dc.titleMicrorobotics and microorganisms: biohybrid autonomous cellular robots
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files