Publication:
Interplay between copper nanoparticle size and oxygen vacancy on mg-doped ceria controls partial hydrogenation performance and stability

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

A series of CunCeMgOx catalysts with various copper nanoparticle sizes and surface defect densities were synthesized and tested for partial hydrogenation of 1,3-butadiene (1,3-BD). The data demonstrated a reaction pathway involving the dissociation of molecular hydrogen on the peripheral oxygen vacancies (O-v-Cu+) before reacting with 1,3-BD adsorbed on the corresponding Cu+ atoms. Analysis of the performance data indicated that the turnover frequency of these Cu+ sites is approximately five times higher than those of the surface Cu-0 sites. Among the catalysts considered, Cu0.5CeMgOx with the smallest copper nanoparticle size provided a stable performance for at least 15 h time-on-stream, while the others were easily deactivating because of carbon deposition. Furthermore, unlike the conventional copper-based catalysts, the Cu0.3CeMgOx catalyst achieved a complete suppression of total hydrogenation even at space velocities offering a complete 1,3-BD conversion. The findings offer a broad potential for the rational design of noble metal-free, highly selective, and stable copper-based partial hydrogenation catalysts for reactions that are prone to coke formation.

Source

Publisher

Amer Chemical Soc

Subject

Chemistry, physical and theoretical

Citation

Has Part

Source

ACS Catalysis

Book Series Title

Edition

DOI

10.1021/acscatal.1c01471

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details