Publication:
Information theoretical analysis of synaptic communication for nanonetworks

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorRamezani, Hamideh
dc.contributor.kuauthorKhan, Tooba
dc.contributor.kuauthorAkan, Özgür Barış
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.date.accessioned2024-11-09T13:47:37Z
dc.date.issued2018
dc.description.abstractCommunication among neurons is the highly evolved and efficient nanoscale communication paradigm, hence the most promising technique for biocompatible nanonetworks. This necessitates the understanding of neuro-spike communication from information theoretical perspective to reach a reference model for nanonetworks. This would also contribute towards developing ICT-based diagnostics techniques for neuro-degenerative diseases. Thus, in this paper, we focus on the fundamental building block of neuro-spike communication, i.e., signal transmission over a synapse, to evaluate its information transfer rate. We aim to analyze a realistic synaptic communication model, which for the first time, encompasses the variation in vesicle release probability with time, synaptic geometry and the re-uptake of neurotransmitters by pre-synaptic terminal. To achieve this objective, we formulate the mutual information between input and output of the synapse. Then, since this communication paradigm has memory, we evaluate the average mutual information over multiple transmissions to find its overall capacity. We derive a closed-form expression for the capacity of the synaptic communication as well as calculate the capacity-achieving input probability distribution. Finally, we find the effects of variation in different synaptic parameters on the information capacity and prove that the diffusion process does not decrease the information a neural response carries about the stimulus in real scenario.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipMINERVA
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipCIRCLE
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.1109/INFOCOM.2018.8486255
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02757
dc.identifier.isbn9781538641286
dc.identifier.issn0743-166X
dc.identifier.linkhttps://doi.org/10.1109/INFOCOM.2018.8486255
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85051202178
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3778
dc.keywordsInformation capacity
dc.keywordsMolecular communication
dc.keywordsNanonetworks
dc.keywordsNeuro-spike communication
dc.keywordsSynaptic transmission
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoERC-2013-CoG
dc.relation.grantno616922
dc.relation.grantnoEU-H2020-FET-Open
dc.relation.grantno665564
dc.relation.grantnoBIDEB-2215
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9401
dc.sourceIEEE Infocom
dc.subjectInformation theory
dc.titleInformation theoretical analysis of synaptic communication for nanonetworks
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorRamezani, Hamideh
local.contributor.kuauthorKhan, Tooba
local.contributor.kuauthorAkan, Özgür Barış
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9401.pdf
Size:
675.38 KB
Format:
Adobe Portable Document Format