Publication:
Fillings of unit cotangent bundles of nonorientable surfaces

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÖzbağcı, Burak
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:25:08Z
dc.date.issued2018
dc.description.abstractWe prove that any minimal weak symplectic filling of the canonical contact structure on the unit cotangent bundle of a nonorientable closed connected smooth surface other than the real projective plane is s-cobordant rel boundary to the disk cotangent bundle of the surface. If the nonorientable surface is the Klein bottle, then we show that the minimal weak symplectic filling is unique up to homeomorphism.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Natural Science Foundation of China [11471212]
dc.description.sponsorshipScientific and Technological Research Council of Turkey [BIDEP-2219] The first author was partially supported by grant no. 11471212 of the National Natural Science Foundation of China. The second author was partially supported by a BIDEP-2219 research grant of the Scientific and Technological Research Council of Turkey.
dc.description.volume50
dc.identifier.doi10.1112/blms.12104
dc.identifier.eissn1469-2120
dc.identifier.issn0024-6093
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85032271393
dc.identifier.urihttps://doi.org/10.1112/blms.12104
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11326
dc.identifier.wos424101200002
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofBulletin of The London Mathematical Society
dc.subjectMathematics
dc.titleFillings of unit cotangent bundles of nonorientable surfaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÖzbağcı, Burak
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files