Publication:
Decoupling for fractal subsets of the parabola

dc.contributor.coauthorChang, Alan
dc.contributor.coauthorPont, Jaume de Dios
dc.contributor.coauthorGreenfeld, Rachel
dc.contributor.coauthorLi, Zane Kun
dc.contributor.coauthorMadrid, Jose
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorJamneshan, Asgar
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:33:38Z
dc.date.issued2022
dc.description.abstractWe consider decoupling for a fractal subset of the parabola. We reduce studying l(2)L(p) dccoupling for a fractal subset on the parabola {(t , t(2)) : 0 <= t <= 1} to studying l(2)L(p/3) decoupling for the projection of this subset to the interval [0, 1]. This generalizes the decoupling theorem of Bourgain-Demeter in the case of the parabola. Due to the sparsity and fractal like structure, this allows us to improve upon Bourgain-Demeter's decoupling theorem for the parabola. In the case when p/3 is an even integer we derive theoretical and computational tools to explicitly compute the associated decoupling constant for this projection to [0, 1]. Our ideas are inspired by the recent work on ellipsephic sets by Biggs (arXiv:1912.04351, 2019 and Acta Arith. 200(4):331-348, 2021) using nested efficient congruencing.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipLa Caixa Foundation “La Caixa” Fellowship
dc.description.sponsorshipEric and Wendy Schmidt Postdoctoral Award
dc.description.sponsorshipGerman Research Foundation (DFG)
dc.description.sponsorshipNational Science Foundation (NSF)
dc.description.versionAuthor's final manuscript
dc.description.volume301
dc.formatpdf
dc.identifier.doi10.1007/s00209-021-02950-0
dc.identifier.eissn1432-1823
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03596
dc.identifier.issn0025-5874
dc.identifier.linkhttps://doi.org/10.1007/s00209-021-02950-0
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85124180544
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2016
dc.identifier.wos750679200001
dc.keywordsHausdorff dimension
dc.keywordsOscillatory integrals
dc.keywordsKakeya set
dc.languageEnglish
dc.publisherSpringer Nature
dc.relation.grantnoLCF/BQ/AA17/11610013
dc.relation.grantnoJA 2512/3-1
dc.relation.grantnoDMS-1902763
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10452
dc.sourceMathematische Zeitschrift
dc.subjectMathematics
dc.titleDecoupling for fractal subsets of the parabola
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorJamneshan, Asgar
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10452.pdf
Size:
763.07 KB
Format:
Adobe Portable Document Format