Publication: Decoupling for fractal subsets of the parabola
dc.contributor.coauthor | Chang, Alan | |
dc.contributor.coauthor | Pont, Jaume de Dios | |
dc.contributor.coauthor | Greenfeld, Rachel | |
dc.contributor.coauthor | Li, Zane Kun | |
dc.contributor.coauthor | Madrid, Jose | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Jamneshan, Asgar | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-11-09T12:33:38Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We consider decoupling for a fractal subset of the parabola. We reduce studying l(2)L(p) dccoupling for a fractal subset on the parabola {(t , t(2)) : 0 <= t <= 1} to studying l(2)L(p/3) decoupling for the projection of this subset to the interval [0, 1]. This generalizes the decoupling theorem of Bourgain-Demeter in the case of the parabola. Due to the sparsity and fractal like structure, this allows us to improve upon Bourgain-Demeter's decoupling theorem for the parabola. In the case when p/3 is an even integer we derive theoretical and computational tools to explicitly compute the associated decoupling constant for this projection to [0, 1]. Our ideas are inspired by the recent work on ellipsephic sets by Biggs (arXiv:1912.04351, 2019 and Acta Arith. 200(4):331-348, 2021) using nested efficient congruencing. | |
dc.description.fulltext | YES | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | La Caixa Foundation “La Caixa” Fellowship | |
dc.description.sponsorship | Eric and Wendy Schmidt Postdoctoral Award | |
dc.description.sponsorship | German Research Foundation (DFG) | |
dc.description.sponsorship | National Science Foundation (NSF) | |
dc.description.version | Author's final manuscript | |
dc.description.volume | 301 | |
dc.format | ||
dc.identifier.doi | 10.1007/s00209-021-02950-0 | |
dc.identifier.eissn | 1432-1823 | |
dc.identifier.embargo | NO | |
dc.identifier.filenameinventoryno | IR03596 | |
dc.identifier.issn | 0025-5874 | |
dc.identifier.link | https://doi.org/10.1007/s00209-021-02950-0 | |
dc.identifier.quartile | Q3 | |
dc.identifier.scopus | 2-s2.0-85124180544 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/2016 | |
dc.identifier.wos | 750679200001 | |
dc.keywords | Hausdorff dimension | |
dc.keywords | Oscillatory integrals | |
dc.keywords | Kakeya set | |
dc.language | English | |
dc.publisher | Springer Nature | |
dc.relation.grantno | LCF/BQ/AA17/11610013 | |
dc.relation.grantno | JA 2512/3-1 | |
dc.relation.grantno | DMS-1902763 | |
dc.relation.uri | http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10452 | |
dc.source | Mathematische Zeitschrift | |
dc.subject | Mathematics | |
dc.title | Decoupling for fractal subsets of the parabola | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Jamneshan, Asgar | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |
Files
Original bundle
1 - 1 of 1