Publication:
Empirical mode decomposition of throat microphone recordings for intake classification

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorTuran, Mehmet Ali Tuğtekin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T12:39:47Z
dc.date.issued2017
dc.description.abstractWearable sensor systems can deliver promising solutions to automatic monitoring of ingestive behavior. This study presents an on-body sensor system and related signal processing techniques to classify different types of food intake sounds. A piezoelectric throat microphone is used to capture food consumption sounds from the neck. The recorded signals are firstly segmented and decomposed using the empirical mode decomposition (EMD) analysis. EMD has been a widely implemented tool to analyze non-stationary and non-linear signals by decomposing data into a series of sub-band oscillations known as intrinsic mode functions (IMFs). For each decomposed IMF signal, time and frequency domain features are then computed to provide a multi-resolution representation of the signal. The minimum redundancy maximum relevance (mRMR) principle is utilized to investigate the most representative features for the food intake classification task, which is carried out using the support vector machines. Experimental evaluations over selected groups of features and EMD achieve significant performance improvements compared to the baseline classification system without EMD.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipACM SIGMM
dc.description.versionPublisher version
dc.identifier.doi10.1145/3132635.3132640
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01323
dc.identifier.isbn9781450355049
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85034857515
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2130
dc.keywordsSignal processing
dc.keywordsClassification (of information)
dc.keywordsDecomposition
dc.keywordsFood supply
dc.keywordsFrequency domain analysis
dc.keywordsHealth care
dc.keywordsMicrophones
dc.keywordsNutrition
dc.keywordsRedundancy
dc.keywordsWearable Sensors
dc.keywordsWearable technology
dc.language.isoeng
dc.publisherAssociation for Computing Machinery (ACM)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/4669
dc.subjectComputer science
dc.titleEmpirical mode decomposition of throat microphone recordings for intake classification
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorTuran, Mehmet Ali Tuğtekin
local.contributor.kuauthorErzin, Engin
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
4669.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format