Publication:
Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Zhang, Yun
Donaher, Joana Liu
Das, Sunny
Li, Xin
Reinhardt, Ferenc
Krall, Jordan A.
Lambert, Arthur W.
Thiru, Prathapan
Keys, Heather R.
Khan, Mehreen

Advisor

Publication Date

2022

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

Through genome-wide and focused CRISPR screens, Zhang et al. discover that loss of PRC2 or KMT2D-COMPASS enables distinct EMT trajectories, which exert differential effects on the metastatic capability of carcinoma cells. Epithelial-mesenchymal transition (EMT) programs operate within carcinoma cells, where they generate phenotypes associated with malignant progression. In their various manifestations, EMT programs enable epithelial cells to enter into a series of intermediate states arrayed along the E-M phenotypic spectrum. At present, we lack a coherent understanding of how carcinoma cells control their entrance into and continued residence in these various states, and which of these states favour the process of metastasis. Here we characterize a layer of EMT-regulating machinery that governs E-M plasticity (EMP). This machinery consists of two chromatin-modifying complexes, PRC2 and KMT2D-COMPASS, which operate as critical regulators to maintain a stable epithelial state. Interestingly, loss of these two complexes unlocks two distinct EMT trajectories. Dysfunction of PRC2, but not KMT2D-COMPASS, yields a quasi-mesenchymal state that is associated with highly metastatic capabilities and poor survival of patients with breast cancer, suggesting that great caution should be applied when PRC2 inhibitors are evaluated clinically in certain patient cohorts. These observations identify epigenetic factors that regulate EMP, determine specific intermediate EMT states and, as a direct consequence, govern the metastatic ability of carcinoma cells.

Description

Source:

Nature Cell Biology

Publisher:

Nature Portfolio

Keywords:

Subject

Cell biology

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details