Publication:
Learning-enhanced 3D fiber orientation mapping in thick cardiac tissues

dc.contributor.coauthorOzturk, Hakancan
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentGraduate School of Health Sciences
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorPhD Student, Saruhan, Eda Nur
dc.contributor.kuauthorPhD Student, Kul, Demet
dc.contributor.kuauthorPhD Student, Sevgin, Börteçine
dc.contributor.kuauthorPhD Student, Çoban, Merve Nur
dc.contributor.kuauthorFaculty Member, Pekkan, Kerem
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF HEALTH SCIENCES
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-09-10T04:55:40Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractFibrous proteins, such as elastin and collagen, are crucial for the structural integrity of the cardiovascular system. For thin tissue-engineered heart valves and surgical patches, the two-dimensional mapping of fiber orientation is well-established. However, for three-dimensional (3D) thick tissue samples, e.g., the embryonic whole heart, robust 3D fiber analysis tools are not available. This information is essential for computational vascular modeling and tissue microstructure characterization. Therefore, this study employs machine learning (ML) and deep learning (DL) techniques to analyze the 3D cardiovascular fiber structures in thick samples of porcine pericardium and embryonic whole hearts. It is hypothesized that ML/DL-based fiber orientation analysis will outperform traditional Fourier transform and directional filter methods by offering higher spatial accuracy and reduced dependency on manual preprocessing. We trained our ML/DL models on both synthetic and real-world cardiovascular datasets obtained from confocal imaging. The evaluation used a mixed dataset of 1200 samples and a porcine/bovine dataset of 400 samples. Support vector regression (SVR) demonstrated the highest accuracy, achieving a normalized mean absolute error (nMAE) of 5.0% on the mixed dataset and 13.0% on the biological dataset. Among DL models, convolutional neural network (CNN) and residual network-50 (ResNet50) had an nMAE of 12.0% and 11.0% on the mixed dataset and 23.0% and 22.0% on the biological dataset, respectively. Attention mechanisms improved performance further, with the channel attention ResNet50 achieving an nMAE of 5.8% on the mixed dataset and 21.0% on the biological dataset. These findings highlight the potential of ML and DL techniques in improving 3D fiber orientation detection, enabling detailed cardiovascular microstructural assessment. (c) 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkiye (TÜBİTAK) [2247A, 2211A]; HORIZON EUROPE European Innovation Council (EIC) Transition project HeartWise [101214454]
dc.description.versionPublished Version
dc.description.volume16
dc.identifier.doi10.1364/BOE.563643
dc.identifier.eissn2156-7085
dc.identifier.embargoNo
dc.identifier.endpage3336
dc.identifier.filenameinventorynoIR06363
dc.identifier.issn2156-7085
dc.identifier.issue8
dc.identifier.quartileQ1
dc.identifier.startpage3315
dc.identifier.urihttps://doi.org/10.1364/BOE.563643
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30096
dc.identifier.wos001542000100001
dc.keywordsMedical imaging
dc.keywordsBiochemical research methods
dc.language.isoeng
dc.publisherOptica Publishing Group
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofBiomedical Optics Express
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectOptics
dc.subjectRadiology
dc.subjectNuclear medicine
dc.titleLearning-enhanced 3D fiber orientation mapping in thick cardiac tissues
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication2f870f28-12c9-4b28-9465-b91a69c1d48c
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication4c75e0a5-ca7f-4443-bd78-1b473d4f6743
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06363.pdf
Size:
4.46 MB
Format:
Adobe Portable Document Format