Publication:
Similarity learning for 3D object retrieval using relevance feedback and risk minimization

dc.contributor.coauthorAkgul, Ceyhun Burak
dc.contributor.coauthorSankur, Buelent
dc.contributor.coauthorYemez, Yuecel
dc.contributor.coauthorSchmitt, Francis
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:09:32Z
dc.date.issued2010
dc.description.abstractWe introduce a similarity learning scheme to improve the 3D object retrieval performance in a relevance feedback setting. The proposed algorithm relies on a score fusion approach that linearly combines elementary similarity scores originating from different shape descriptors into a final similarity function. Each elementary score is modeled in terms of the posterior probability of a database item being relevant to the user-provided query. The posterior parameters are learned via off-line discriminative training, while the optimal combination of weights to generate the final similarity function is obtained by on-line empirical ranking risk minimization. This joint use of on-line and off-line learning methods in relevance feedback not only improves the retrieval performance significantly as compared to the totally unsupervised case, but also outperforms the standard support vector machines based approach. Experiments on several 3D databases, including the Princeton Shape Benchmark, show also that the proposed algorithm has a better small sample behavior.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue44987
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume89
dc.identifier.doi10.1007/s11263-009-0294-1
dc.identifier.eissn1573-1405
dc.identifier.issn0920-5691
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-77953286374
dc.identifier.urihttps://doi.org/10.1007/s11263-009-0294-1
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9322
dc.identifier.wos277547600016
dc.keywordsRelevance feedback
dc.keywordsSimilarity models and learning
dc.keywordsEmpirical ranking risk
dc.keywordsSupport vector machines
dc.keywords3D object retrieval image retrieval
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofInternational Journal of Computer Vision
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.titleSimilarity learning for 3D object retrieval using relevance feedback and risk minimization
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorYemez, Yücel
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files