Publication:
Piezo capsule: ultrasonic way of wireless pressure measurement

dc.contributor.coauthorMutlu, Şenol
dc.contributor.coauthorAghakhani, Amirreza
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T13:22:41Z
dc.date.issued2022
dc.description.abstractHeart failure (HF) rates elevate worldwide with the aging population. Miniaturized and wireless implants with real-time data transfer capability can alleviate the surgical complexities of cardiac pressure monitoring. Despite recent developments of mm-size implants with complex circuitries and self-powering units, a simple, passive, and effective implant design for the real-time pressure reading is missing. Here, the piezo capsule, a simple, cost-effective, and miniaturized passive ultrasound pressure sensing system, is introduced. The capsule design consists of a 1 mm-cube-sized lead zirconate titanate (PZT) transducer and a T-shaped mechanical pin. The impedance changes of an interrogating ultrasound probe, which is ultrasonically coupled to the receiver implant, correlate to the electrical/mechanical loading of the piezo capsule. The ultrasonic sensing properties of the proposed device are characterized across a hard-solid medium (e.g., plexiglass) and soft tissue-like media (e.g., polydimethylsiloxane (PDMS) and chicken breast tissue) and verified the impedance changes using finite element simulations. Last, dynamic wireless pressure readings of an artificial vessel for varying fluid flow pulse-frequency and volumetric rate are demonstrated. The sensitivity of 0.375 omega kPa(-1) is achieved as the pressure changed from 14 to 86 kPa and pulse frequency from 0 to 100 bpm with a fixed flow rate of 8 mL min(-1).
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.issue10
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipS.M. and A.A. contributed equally to this work. This work is funded by theMax Planck Society. Open Access funding enabled and organized by Projekt DEAL.
dc.description.volume4
dc.identifier.doi10.1002/aisy.202200125
dc.identifier.eissn2640-4567
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03753
dc.identifier.quartileQ1
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3336
dc.identifier.wos838270300001
dc.keywordsPiezoelectric
dc.keywordsUltrasonic coupling
dc.keywordsUltrasonic implant
dc.keywordsUltrasound pressure sensor
dc.keywordsWireless pressure reading
dc.language.isoeng
dc.publisherWiley
dc.relation.grantnoNA
dc.relation.ispartofAdvanced Intelligent Systems
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10602
dc.subjectAutomation and control systems
dc.subjectComputer science, Artificial intelligence
dc.subjectRobotics
dc.titlePiezo capsule: ultrasonic way of wireless pressure measurement
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10602.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format