Publication:
Size-dependent locomotion ability of surface microrollers on physiologically relevant microtopographical surfaces

dc.contributor.coauthorBozuyuk, Ugur
dc.contributor.coauthorYildiz, Erdost
dc.contributor.coauthorHan, Mertcan
dc.contributor.coauthorDemir, Sinan Ozgun
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-12-29T09:40:43Z
dc.date.issued2023
dc.description.abstractControlled microrobotic navigation inside the body possesses significant potential for various biomedical engineering applications. Successful application requires considering imaging, control, and biocompatibility. Interaction with biological environments is also a crucial factor in ensuring safe application, but can also pose counterintuitive hydrodynamic barriers, limiting the use of microrobots. Surface rolling microrobots or surface microrollers is a robust microrobotic platform with significant potential for various applications; however, conventional spherical microrollers have limited locomotion ability over biological surfaces due to microtopography effects resulting from cell microtopography in the size range of 2-5 & mu;m. Here, the impact of the microtopography effect on spherical microrollers of different sizes (5, 10, 25, and 50 & mu;m) is investigated using computational fluid dynamics simulations and experiments. Simulations revealed that the microtopography effect becomes insignificant for increasing microroller sizes, such as 50 & mu;m. Moreover, it is demonstrated that 50 & mu;m microrollers exhibited smooth locomotion ability on in vitro cell layers and inside blood vessels of a chicken embryo model. These findings offer rational design principles for surface microrollers for their potential practical biomedical applications.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue47
dc.description.openaccessGreen Published, hybrid
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume19
dc.identifier.doi10.1002/smll.202303396
dc.identifier.eissn1613-6829
dc.identifier.issn1613-6810
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85165452004
dc.identifier.urihttps://doi.org/10.1002/smll.202303396
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23403
dc.identifier.wos1032173700001
dc.keywordsComputational fluid dynamics
dc.keywordsHydrodynamics
dc.keywordsLab-on-a-chip
dc.keywordsMedical microrobots
dc.keywordsMicrorobotics
dc.keywordsSurface microrollers
dc.language.isoeng
dc.publisherWiley-V C H Verlag Gmbh
dc.relation.ispartofSmall
dc.subjectChemistry
dc.subjectMultidisciplinary
dc.subjectPhysical
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science
dc.subjectPhysics
dc.subjectApplied
dc.subjectCondensed matter
dc.titleSize-dependent locomotion ability of surface microrollers on physiologically relevant microtopographical surfaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1College of Engineering
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05524.pdf
Size:
3.55 MB
Format:
Adobe Portable Document Format