Publication:
Swan conductors and torsion in the logarithmic de rham complex

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜnver, Sinan
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:03:55Z
dc.date.issued2010
dc.description.abstractWe prove, for an arithmetic scheme X/S over a discrete valuation ring whose special fiber is a strict normal crossings divisor in X, that the Swan conductor of X/S is equal to the Euler characteristic of the torsion in the logarithmic de Rham complex of X/S This is a precise logarithmic analog of a theorem by Bloch [1].
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyTR Dizin
dc.description.issue4
dc.description.openaccessYES
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume34
dc.identifier.doi10.3906/mat-0902-30
dc.identifier.issn1300-0098
dc.identifier.scopus2-s2.0-77958551162
dc.identifier.urihttps://doi.org/10.3906/mat-0902-30
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8549
dc.identifier.wos284435200003
dc.keywordsArithmetic schemes
dc.keywordsCurves
dc.language.isoeng
dc.publisherScientific Technical Research Council Turkey-Tubitak
dc.relation.ispartofTurkish Journal of Mathematics
dc.subjectMathematics
dc.titleSwan conductors and torsion in the logarithmic de rham complex
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÜnver, Sinan
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files