Publication:
Artificial intelligence-based segmentation of residual pancreatic cancer in resection specimens following neoadjuvant treatment (ISGPP-2): international improvement and validation study

dc.contributor.coauthorJanssen, Boris V.
dc.contributor.coauthorOteman, Bart
dc.contributor.coauthorAli, Mahsoem
dc.contributor.coauthorValkema, Pieter A.
dc.contributor.coauthorBasturk, Olca
dc.contributor.coauthorChatterjee, Deyali
dc.contributor.coauthorChou, Angela
dc.contributor.coauthorCrobach, Stijn
dc.contributor.coauthorDoukas, Michael
dc.contributor.coauthorDrillenburg, Paul
dc.contributor.coauthorEsposito, Irene
dc.contributor.coauthorGill, Anthony J.
dc.contributor.coauthorHong, Seung-Mo
dc.contributor.coauthorJansen, Casper
dc.contributor.coauthorKliffen, Mike
dc.contributor.coauthorMittal, Anubhav
dc.contributor.coauthorSamra, Jas
dc.contributor.coauthorvan Velthuysen, Marie-Louise F.
dc.contributor.coauthorYavas, Aslihan
dc.contributor.coauthorKazemier, Geert
dc.contributor.coauthorVerheij, Joanne
dc.contributor.coauthorSteyerberg, Ewout
dc.contributor.coauthorBesselink, Marc G.
dc.contributor.coauthorWang, Huamin
dc.contributor.coauthorVerbeke, Caroline
dc.contributor.coauthorFarina, Arantza
dc.contributor.coauthorde Boer, Onno J.
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorAdsay, Nazmi Volkan
dc.contributor.schoolcollegeinstituteResearch Center
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-12-29T09:36:20Z
dc.date.issued2024
dc.description.abstractNeoadjuvant therapy (NAT) has become routine in patients with borderline resectable pancreatic cancer. Pathologists examine pancreatic cancer resection specimens to evaluate the effect of NAT. However, an automated scoring system to objectively quantify residual pancreatic cancer (RPC) is currently lacking. Herein, we developed and validated the first automated segmentation model using artificial intelligence techniques to objectively quantify RPC. Digitized histopathological tissue slides were included from resected pancreatic cancer specimens from 14 centers in 7 countries in Europe, North America, Australia, and Asia. Four different scanner types were used: Philips (56%), Hamamatsu (27%), 3DHistech (10%), and Leica (7%). Regions of interest were annotated and classified as cancer, non-neoplastic pancreatic ducts, and others. A U-Net model was trained to detect RPC. Validation consisted of by-scanner internal-external cross-validation. Overall, 528 unique hematoxylin and eosin (H & E) slides from 528 patients were included. In the individual Philips, Hamamatsu, 3DHistech, and Leica scanner cross-validations, mean F1 scores of 0.81 (95% CI, 0.77-0.84), 0.80 (0.78-0.83), 0.76 (0.65-0.78), and 0.71 (0.65-0.78) were achieved, respectively. In the meta-analysis of the cross-validations, the mean F1 score was 0.78 (0.71-0.84). A final model was trained on the entire data set. This ISGPP model is the first segmentation model using artificial intelligence techniques to objectively quantify RPC following NAT. The internally-externally cross-validated model in this study demonstrated robust performance in detecting RPC in specimens. The ISGPP model, now made publically available, enables automated RPC segmentation and forms the basis for objective NAT response evaluation in pancreatic cancer.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue9
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume48
dc.identifier.doi10.1097/PAS.0000000000002270
dc.identifier.eissn1532-0979
dc.identifier.issn0147-5185
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85199366924
dc.identifier.urihttps://doi.org/10.1097/PAS.0000000000002270
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22005
dc.identifier.wos1291924700014
dc.keywordsPancreatic cancer
dc.keywordsHistopathology
dc.keywordsTumor response scoring
dc.keywordsNeoadjuvant therapy
dc.keywordsArtificial intelligence
dc.keywordsMachine learning
dc.language.isoeng
dc.publisherLippincott Williams and Wilkins
dc.relation.ispartofAmerican Journal of Surgical Pathology
dc.subjectPathology
dc.subjectSurgery
dc.subjectPancreas tumor
dc.subjectAdenocarcinoma
dc.subjectChemotherapy
dc.titleArtificial intelligence-based segmentation of residual pancreatic cancer in resection specimens following neoadjuvant treatment (ISGPP-2): international improvement and validation study
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAdsay, Nazmi Volkan
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1Research Center
local.publication.orgunit2KUTTAM (Koç University Research Center for Translational Medicine)
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscovery91bbe15d-017f-446b-b102-ce755523d939
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscoveryd437580f-9309-4ecb-864a-4af58309d287

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04500.pdf
Size:
732.86 KB
Format:
Adobe Portable Document Format