Publication:
3D printing of elastomeric bioinspired complex adhesive microstructures

dc.contributor.coauthorDayan, Cem Balda
dc.contributor.coauthorChun, Sungwoo
dc.contributor.coauthorKrishna Subbaiah, Nagaraj
dc.contributor.coauthorDrotlef, Dirk Michael
dc.contributor.coauthorAkolpoğlu, Mükrime Birgül
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T12:43:55Z
dc.date.issued2021
dc.description.abstractBioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue40
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipInternational Max Planck Research School for Intelligent Systems (IMPRS-IS)
dc.description.sponsorshipAlexander von Humboldt Foundation Fellowship Support
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume33
dc.formatpdf
dc.identifier.doi10.1002/adma.202103826
dc.identifier.eissn1521-4095
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03105
dc.identifier.issn0935-9648
dc.identifier.linkhttps://doi.org/10.1002/adma.202103826
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85112432272
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2379
dc.identifier.wos685407000001
dc.keywordsBioinspired microstructures
dc.keywordsGecko-inspired adhesives
dc.keywordsLiquid super-repellency
dc.keywordsReversible adhesion
dc.keywordsTwo-photon polymerization
dc.languageEnglish
dc.publisherWiley
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9765
dc.sourceAdvanced Materials
dc.subjectChemistry
dc.subjectPhysical chemistry
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science
dc.subjectPhysics
dc.subjectCondensed matter
dc.subjectScience and technology
dc.title3D printing of elastomeric bioinspired complex adhesive microstructures
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9765.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format