Publication: The long and winding road of reprogramming-induced rejuvenation
Program
KU-Authors
KU Authors
Co-Authors
Gladyshev, Vadim N.
Advisor
Publication Date
2024
Language
en
Type
Review
Journal Title
Journal ISSN
Volume Title
Abstract
Organismal aging is inherently connected to the aging of its constituent cells and systems. Reducing the biological age of the organism may be assisted by reducing the age of its cells - an approach exemplified by partial cell reprogramming through the expression of Yamanaka factors or exposure to chemical cocktails. It is crucial to protect cell type identity during partial reprogramming, as cells need to retain or rapidly regain their functions following the treatment. Another critical issue is the ability to quantify biological age as reprogrammed older cells acquire younger states. We discuss recent advances in reprogramming-induced rejuvenation and offer a critical review of this procedure and its relationship to the fundamental nature of aging. We further comparatively analyze partial reprogramming, full reprogramming and transdifferentiation approaches, assess safety concerns and emphasize the importance of distinguishing rejuvenation from dedifferentiation. Finally, we highlight translational opportunities that the reprogramming-induced rejuvenation approach offers. Rejuvenation and partial reprogramming are two frontier areas in the field of aging. Here, the authors summarize advances in these fields and suggest future directions for research and therapy.
Description
Source:
Nature Communications
Publisher:
Nature Portfolio
Keywords:
Subject
Molecular biology and genetics