Publication:
A theoretical modeling and analysis communication via heat flow at nanoscale

Thumbnail Image

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Nanonetworks constructed by interconnecting nanodevices using wireless communication allow the nanodevices to perform more complex functions by means of cooperation between them. For the first time in the literature, a novel and physically realizable nanoscale communication technique is introduced: Nanoscale Heat Communication (NHC) in which the heat transfer is used for communication at the nanoscale. The transmitted information is encoded in temperature signals using Magneto-Caloric Effect (MCE) which is the change in temperature of a magnetic material exposed to a varying magnetic field. Thermal energy emitted or absorbed by a transmitter nanodevice is subject to the laws of thermal diffusion which changes the temperature of the communication medium. The transmitted information is decoded by a receiver nanodevice that senses the temperature variations. Using information theoretical analysis, a closed-form expression for the channel capacity is obtained. According to the performance evaluation of the channel capacity, NHC provides a significantly higher capacity communication compared with the existing molecular communication techniques. Therefore, NHC stands as a promising solution to nanoscale communication between nanomachines based on its channel capacity performance, advantages, and possible applications for the emerging field of nanonetworks.

Source

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Engineering, Telecommunications

Citation

Has Part

Source

IEEE Transactions on Communications

Book Series Title

Edition

DOI

10.1109/TCOMM.2014.2353047

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

3

Downloads

View PlumX Details