Publication:
Overview of CLEF 2019 lab protestnews: extracting protests from news in a cross-context setting

dc.contributor.departmentDepartment of Sociology
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentGraduate School of Social Sciences and Humanities
dc.contributor.kuauthorAkdemir, Arda
dc.contributor.kuauthorGürel, Burak
dc.contributor.kuauthorHürriyetoğlu, Ali
dc.contributor.kuauthorMutlu, Osman
dc.contributor.kuauthorYoltar, Çağrı
dc.contributor.kuauthorYörük, Erdem
dc.contributor.kuauthorYüret, Deniz
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SOCIAL SCIENCES AND HUMANITIES
dc.date.accessioned2024-11-09T11:42:46Z
dc.date.issued2019
dc.description.abstractWe present an overview of the CLEF-2019 Lab ProtestNews on Extracting Protests from News in the context of generalizable natural language processing. The lab consists of document, sentence, and token level information classification and extraction tasks that were referred as task 1, task 2, and task 3 respectively in the scope of this lab. The tasks required the participants to identify protest relevant information from English local news at one or more aforementioned levels in a cross-context setting, which is cross-country in the scope of this lab. The training and development data were collected from India and test data was collected from India and China. The lab attracted 58 teams to participate in the lab. 12 and 9 of these teams submitted results and working notes respectively. We have observed neural networks yield the best results and the performance drops significantly for majority of the submissions in the cross-country setting, which is China.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council (ERC) Starting Grant
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipHorizon 2020
dc.description.versionPublisher version
dc.identifier.doi10.1007/978-3-030-28577-7_32
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01766
dc.identifier.issn1613-0073
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85072820748
dc.identifier.urihttps://hdl.handle.net/20.500.14288/254
dc.keywordsConflict
dc.keywordsCivil war
dc.keywordsCivil conflicts
dc.keywordsComputational social science
dc.keywordsEvent extraction
dc.keywordsGeneralizability
dc.keywordsInformation extraction
dc.keywordsInformation retrieval
dc.keywordsMachine learning
dc.keywordsNatural language processing
dc.keywordsText classification
dc.language.isoeng
dc.publisherSpringer
dc.relation.grantno714868
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8358
dc.subjectHumanities
dc.subjectSociology
dc.titleOverview of CLEF 2019 lab protestnews: extracting protests from news in a cross-context setting
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorHürriyetoğlu, Ali
local.contributor.kuauthorYörük, Erdem
local.contributor.kuauthorYüret, Deniz
local.contributor.kuauthorYoltar, Çağrı
local.contributor.kuauthorGürel, Burak
local.contributor.kuauthorMutlu, Osman
local.contributor.kuauthorAkdemir, Arda
local.publication.orgunit1GRADUATE SCHOOL OF SOCIAL SCIENCES AND HUMANITIES
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Social Sciences and Humanities
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Sociology
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Social Sciences and Humanities
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication10f5be47-fab1-42a1-af66-1642ba4aff8e
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublicatione192fff1-4efe-45a7-ab71-30233fc185a9
relation.isOrgUnitOfPublication.latestForDiscovery10f5be47-fab1-42a1-af66-1642ba4aff8e
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication3f7621e3-0d26-42c2-af64-58a329522794
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationc5c9bf5f-4655-411c-a602-0d68f2e2ad88
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8358.pdf
Size:
425.64 KB
Format:
Adobe Portable Document Format