Publication:
Learning markerless robot-depth camera calibration and end-effector pose estimation

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorSefercik, Buğra Can
dc.contributor.kuauthorAkgün, Barış
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.date.accessioned2024-12-29T09:39:30Z
dc.date.issued2023
dc.description.abstractTraditional approaches to extrinsic calibration use fiducial markers and learning-based approaches rely heavily on simulation data. In this work, we present a learning-based markerless extrinsic calibration system that uses a depth camera and does not rely on simulation data. We learn models for end-effector (EE) segmentation, single-frame rotation prediction and keypoint detection, from automatically generated real-world data. We use a transformation trick to get EE pose estimates from rotation predictions and a matching algorithm to get EE pose estimates from keypoint predictions. We further utilize the iterative closest point algorithm, multiple-frames, filtering and outlier detection to increase calibration robustness. Our evaluations with training data from multiple camera poses and test data from previously unseen poses give sub-centimeter and sub-deciradian average calibration and pose estimation errors. We also show that a carefully selected single training pose gives comparable results. © 2023 Proceedings of Machine Learning Research. All rights reserved.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsorsThis work was supported by KUIS AI Center computational resources. The authors would also like to thank Onur Berk Töre and Farzin Negahbani for their infrastructure support and work on an earlier version of the system.
dc.description.volume205
dc.identifier.issn2640-3498
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85161024274
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23015
dc.identifier.wos1232393400134
dc.keywordsCamera calibration
dc.keywordsPerception
dc.keywordsPose estimation
dc.languageen
dc.publisherMl Research Press
dc.sourceProceedings of Machine Learning Research
dc.subjectArtificial intelligence
dc.subjectTheory and methods
dc.subjectRobotics
dc.titleLearning markerless robot-depth camera calibration and end-effector pose estimation
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorSefercik, Buğra Can
local.contributor.kuauthorAkgün, Barış
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files