Publication:
CLIPAway: harmonizing focused embeddings for removing objects via diffusion models

dc.conference.dateDEC 09-15, 2014
dc.conference.locationVancouver
dc.contributor.coauthorEkin, Yigit
dc.contributor.coauthorYildirim, Ahmet Burak
dc.contributor.coauthorCaglar, Erdem Eren
dc.contributor.coauthorErdem, Erkut
dc.contributor.coauthorDundar, Aysegul
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.kuauthorFaculty Member, Erdem, Aykut
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-10-20T17:34:06Z
dc.date.available2025-10-21
dc.date.issued2024-12-10
dc.description.abstractAdvanced image editing techniques, particularly inpainting, are essential for seamlessly removing unwanted elements while preserving visual integrity. Traditional GAN-based methods have achieved notable success, but recent advancements in diffusion models have produced superior results due to their training on large-scale datasets, enabling the generation of remarkably realistic inpainted images. Despite their strengths, diffusion models often struggle with object removal tasks without explicit guidance, leading to unintended hallucinations of the removed object. To address this issue, we introduce CLIPAway, a novel approach leveraging CLIP embeddings to focus on background regions while excluding foreground elements. CLIPAway enhances inpainting accuracy and quality by identifying embeddings that prioritize the background, thus achieving seamless object removal. Unlike other methods that rely on specialized training datasets or costly manual annotations, CLIPAway provides a flexible, plug-and-play solution compatible with various diffusion-based inpainting techniques
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.openaccessEditöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.)
dc.description.peerreviewstatusPeer-Reviewed
dc.description.publisherscopeInternational
dc.identifier.doi10.48550/arXiv.2406.09368
dc.identifier.embargoNo
dc.identifier.issn1049-5258
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105000498077
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30787
dc.identifier.urihttps://doi.org/10.48550/arXiv.2406.09368
dc.identifier.volume37
dc.keywordsImage inpainting
dc.keywordsDiffusion models
dc.language.isoeng
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofAdvances in Neural Information Processing Systems
dc.relation.ispartof38th Conference on Neural Information Processing Systems, NeurIPS 2024
dc.relation.openaccessYes
dc.rightsEditöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.)
dc.rights.uriEditöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.)
dc.subjectGenerative AI
dc.subjectImage processing
dc.titleCLIPAway: harmonizing focused embeddings for removing objects via diffusion models
dc.typeConference Proceeding
dspace.entity.typePublication
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication.latestForDiscovery77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscoveryd437580f-9309-4ecb-864a-4af58309d287

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2102_CLIPAway_Harmonizing_focu.pdf
Size:
4.07 MB
Format:
Adobe Portable Document Format