Publication: CLIPAway: harmonizing focused embeddings for removing objects via diffusion models
| dc.conference.date | DEC 09-15, 2014 | |
| dc.conference.location | Vancouver | |
| dc.contributor.coauthor | Ekin, Yigit | |
| dc.contributor.coauthor | Yildirim, Ahmet Burak | |
| dc.contributor.coauthor | Caglar, Erdem Eren | |
| dc.contributor.coauthor | Erdem, Erkut | |
| dc.contributor.coauthor | Dundar, Aysegul | |
| dc.contributor.department | KUIS AI (Koç University & İş Bank Artificial Intelligence Center) | |
| dc.contributor.kuauthor | Faculty Member, Erdem, Aykut | |
| dc.contributor.schoolcollegeinstitute | Research Center | |
| dc.date.accessioned | 2025-10-20T17:34:06Z | |
| dc.date.available | 2025-10-21 | |
| dc.date.issued | 2024-12-10 | |
| dc.description.abstract | Advanced image editing techniques, particularly inpainting, are essential for seamlessly removing unwanted elements while preserving visual integrity. Traditional GAN-based methods have achieved notable success, but recent advancements in diffusion models have produced superior results due to their training on large-scale datasets, enabling the generation of remarkably realistic inpainted images. Despite their strengths, diffusion models often struggle with object removal tasks without explicit guidance, leading to unintended hallucinations of the removed object. To address this issue, we introduce CLIPAway, a novel approach leveraging CLIP embeddings to focus on background regions while excluding foreground elements. CLIPAway enhances inpainting accuracy and quality by identifying embeddings that prioritize the background, thus achieving seamless object removal. Unlike other methods that rely on specialized training datasets or costly manual annotations, CLIPAway provides a flexible, plug-and-play solution compatible with various diffusion-based inpainting techniques | |
| dc.description.fulltext | Yes | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | Scopus | |
| dc.description.openaccess | Editöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.) | |
| dc.description.peerreviewstatus | Peer-Reviewed | |
| dc.description.publisherscope | International | |
| dc.identifier.doi | 10.48550/arXiv.2406.09368 | |
| dc.identifier.embargo | No | |
| dc.identifier.issn | 1049-5258 | |
| dc.identifier.quartile | N/A | |
| dc.identifier.scopus | 2-s2.0-105000498077 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/30787 | |
| dc.identifier.uri | https://doi.org/10.48550/arXiv.2406.09368 | |
| dc.identifier.volume | 37 | |
| dc.keywords | Image inpainting | |
| dc.keywords | Diffusion models | |
| dc.language.iso | eng | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Advances in Neural Information Processing Systems | |
| dc.relation.ispartof | 38th Conference on Neural Information Processing Systems, NeurIPS 2024 | |
| dc.relation.openaccess | Yes | |
| dc.rights | Editöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.) | |
| dc.rights.uri | Editöryel Kontrolde bakılacak (Bu alan ilgili koleksiyona geçirilirken boşaltılıp öyle atılacak drop-down menü sonrasında ilgili koleksiyonda gelerek doğru alan seçilecek.) | |
| dc.subject | Generative AI | |
| dc.subject | Image processing | |
| dc.title | CLIPAway: harmonizing focused embeddings for removing objects via diffusion models | |
| dc.type | Conference Proceeding | |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 77d67233-829b-4c3a-a28f-bd97ab5c12c7 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 77d67233-829b-4c3a-a28f-bd97ab5c12c7 | |
| relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | d437580f-9309-4ecb-864a-4af58309d287 |
Files
Original bundle
1 - 1 of 1
