Publication:
Top-down technique for scaling to nano in silicon MEMS

dc.contributor.coauthorWollschlaeger, Nicole
dc.contributor.coauthorOesterle, Werner
dc.contributor.coauthorLeblebici, Yusuf
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentKUYTAM (Koç University Surface Science and Technology Center)
dc.contributor.kuauthorAlaca, Burhanettin Erdem
dc.contributor.kuauthorKılınç, Yasin
dc.contributor.kuauthorNadar, Gökhan
dc.contributor.kuauthorTaşdemir, Zuhal
dc.contributor.kuauthorYılmaz, Mustafa Akın
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2024-11-09T13:21:51Z
dc.date.issued2017
dc.description.abstractNanoscale building blocks impart added functionalities to microelectromechanical systems (MEMS). The integration of silicon nanowires with MEMS-based sensors leading to miniaturization with improved sensitivity and higher noise immunity is one example highlighting the advantages of this multiscale approach. The accelerated pace of research in this area gives rise to an urgent need for batch-compatible solutions for scaling to nano. To address this challenge, a monolithic fabrication approach of silicon nanowires with 10-mu m-thick silicon-on-insulator (SOI) MEMS is developed in this work. A two-step Si etching approach is adopted, where the first step creates a shallow surface protrusion and the second step releases it in the form of a nanowire. It is during this second deep etching step that MEMS-with at least a 2-order-of-magnitude scale difference-is formed as well. The technique provides a pathway for preserving the lithographic resolution and transforming it into a very high mechanical precision in the assembly of micro-and nanoscales with an extreme topography. Validation of the success of integration is carried out via in situ actuation of MEMS inside an electron microscope loading the nanowire up to its fracture. The technique yields nanowires on the top surface of MEMS, thereby providing ease of access for the purposes of carrying out surface processes such as doping and contact formation as well as in situ observation. As the first study demonstrating such monolithic integration in thick SOI, the work presents a pathway for scaling down to nano for future MEMS combining multiple scales.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipKoç University-Istanbul Rotary Club Fundamental Research Seed Fund Program
dc.description.sponsorshipSwiss Government Excellence Grant
dc.description.sponsorshipEMPIR programme cofinanced by the Participating States and from the European Union's Horizon
dc.description.versionPublisher Version
dc.description.volume35
dc.identifier.doi10.1116/1.4978047
dc.identifier.eissn2166-2754
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01254
dc.identifier.issn2166-2746
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85015644504
dc.identifier.urihttps://doi.org/10.1116/1.4978047
dc.identifier.wos397858500049
dc.keywordsFabrication
dc.keywordsNanostructures
dc.keywordsIntegration
dc.keywordsNanowires
dc.language.isoeng
dc.publisherAmerican Vacuum Society (AVS)
dc.relation.grantno112E058 2214/A
dc.relation.ispartofJournal of Vacuum Science and Technology B
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/3118
dc.subjectElectrical and electronic engineering
dc.subjectApplied physics
dc.subjectNanoscience and nanotechnology
dc.titleTop-down technique for scaling to nano in silicon MEMS
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAlaca, Burhanettin Erdem
local.contributor.kuauthorNadar, Gökhan
local.contributor.kuauthorYılmaz, Mustafa Akın
local.contributor.kuauthorKılınç, Yasin
local.contributor.kuauthorTaşdemir, Zuhal
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1Research Center
local.publication.orgunit1College of Engineering
local.publication.orgunit2KUYTAM (Koç University Surface Science and Technology Center)
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublicationd41f66ba-d7a4-4790-9f8f-a456c391209b
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
3118.pdf
Size:
1.79 MB
Format:
Adobe Portable Document Format