Publication:
IDE-integrated microneedle arrays as fully biodegradable platforms for wearable/implantable capacitive biosensing

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorÜrey, Hakan
dc.contributor.kuauthorMirzajani, Hadi
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.researchcenterKoç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:41:05Z
dc.date.issued2023
dc.description.abstractMicroneedle biosensors have emerged as a promising tool for in situ biomarker detection due to their minimally invasive nature and ability to interface with interstitial fluid (ISF). However, most previously demonstrated ones are limited to in situ detection of small molecules and ions, employing amperometry or potentiometry measurement techniques with electrical current or voltage output metrics, respectively, which may not be suitable for detecting large molecules, such as proteins. This letter presents an innovative approach utilizing a microneedle array integrated with an interdigitated electrode (MAIDE), enabling in situ capacitive detection and quantification of protein biomarkers. Following microneedle penetration, the interdigitated electrode array establishes direct contact with the solution, enabling real-time monitoring of interfacial capacitance modulations as the result of the binding reaction, leading to the acquisition of rich molecular data. Equivalent circuit model extraction followed by impedance spectroscopy for different concentrations of bovine serum albumin (BSA) indicated the suitability of the proposed platform in tracking the interfacial capacitance variations with respect to different BSA concentrations of 100, 10, and 1 μg/mL with a detection limit of 21 ng/mL. Furthermore, the device showed satisfactory results for biodegradability experiments where it disintegrated for a duration of 10 h. In addition, in vivo experiments show stable capacitance readings with (dC/C)% deviations less than 0.5%, indicating its potential for biodegradable wearable/implantable capacitive biosensing applications
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.publisherscopeInternational
dc.description.volume8
dc.identifier.doi10.1109/LSENS.2023.3335887
dc.identifier.issn2475-1472
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85178043248
dc.identifier.urihttps://doi.org/10.1109/LSENS.2023.3335887
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23523
dc.identifier.wos1136690000002
dc.keywordsBiodegradable
dc.keywordsBiosensor
dc.keywordsCapacitance
dc.keywordsCapacitive sensing
dc.keywordsElectric double-layer
dc.keywordsElectrodes
dc.keywordsImpedance
dc.keywordsInterdigitated electrode (IDE)
dc.keywordsMicroneedle array
dc.keywordsProteins
dc.keywordsSensors
dc.keywordsSurface impedance
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.sourceIEEE Sensors Letters
dc.subjectEngineering
dc.subjectElectrical
dc.subjectElectronic
dc.subjectInstruments
dc.subjectInstrumentation
dc.subjectPhysics
dc.subjectApplied
dc.titleIDE-integrated microneedle arrays as fully biodegradable platforms for wearable/implantable capacitive biosensing
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorÜrey, Hakan
local.contributor.kuauthorMirzajani, Hadi
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files