Publication:
Enhancing treatment decisions for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: a reinforcement learning approach

Thumbnail Image

Departments

Organizational Unit

School / College / Institute

Organizational Unit
SCHOOL OF MEDICINE
Upper Org Unit

Program

KU Authors

Co-Authors

Bozcuk, Hakan Sat
Sert, Leyla
Kaplan, Muhammet Ali
Tatli, Ali Murat
Karaca, Mustafa
Muglu, Harun
Bilici, Ahmet
Kilictas, Bilge Sah
Artac, Mehmet
Erel, Pinar

Publication Date

Language

Embargo Status

No

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Background: Although higher-generation TKIs are associated with improved progression-free survival in advanced NSCLC patients with EGFR mutations, the optimal selection of TKI treatment remains uncertain. To address this gap, we developed a web application powered by a reinforcement learning (RL) algorithm to assist in guiding initial TKI treatment decisions. Methods: Clinical and mutational data from advanced NSCLC patients were retrospectively collected from 14 medical centers. Only patients with complete data and sufficient follow-up were included. Multiple supervised machine learning models were tested, with the Extra Trees Classifier (ETC) identified as the most effective for predicting progression-free survival. Feature importance scores were calculated by the ETC, and features were then integrated into a Deep Q-Network (DQN) RL algorithm. The RL model was designed to select optimal TKI generation and a treatment line for each patient and was embedded into an open-source web application for experimental clinical use. Results: In total, 318 cases of EGFR-mutant advanced NSCLC were analyzed, with a median patient age of 63. A total of 52.2% of patients were female, and 83.3% had ECOG scores of 0 or 1. The top three most influential features identified were neutrophil-to-lymphocyte ratio (log-transformed), age (log-transformed), and the treatment line of TKI administration, as tested by the ETC algorithm, with an area under curve (AUC) value of 0.73, whereas the DQN RL algorithm achieved a higher AUC value of 0.80, assigning distinct Q-values across four TKI treatment categories. This supports the decision-making process in the web-based 'EGFR Mutant NSCLC Treatment Advisory System', where clinicians can input patient-specific data to receive tailored recommendations. Conclusions: The RL-based web application shows promise in assisting TKI treatment selection for EGFR-mutant advanced NSCLC patients, underscoring the potential for reinforcement learning to enhance decision-making in oncology care.

Source

Publisher

MDPI

Subject

Oncology

Citation

Has Part

Source

Cancers

Book Series Title

Edition

DOI

10.3390/cancers17020233

item.page.datauri

Link

Rights

CC BY (Attribution)

Copyrights Note

Creative Commons license

Except where otherwised noted, this item's license is described as CC BY (Attribution)

Endorsement

Review

Supplemented By

Referenced By

0

Views

1

Downloads

View PlumX Details