Publication:
Causal mediation analysis in the presence of post-treatment confounding variables: a Monte Carlo simulation study

dc.contributor.coauthorMacKinnon, David P.
dc.contributor.coauthorValente, Matthew J.
dc.contributor.departmentDepartment of Psychology
dc.contributor.departmentGraduate School of Social Sciences and Humanities
dc.contributor.kuauthorSakarya, Yasemin Kisbu
dc.contributor.kuauthorSelçuk, Esra Çetinkaya
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SOCIAL SCIENCES AND HUMANITIES
dc.date.accessioned2024-11-09T12:28:53Z
dc.date.issued2020
dc.description.abstractIn many disciplines, mediating processes are usually investigated with randomized experiments and linear regression to determine if the treatment affects the outcome through a mediator. However, randomizing the treatment will not yield accurate causal direct and indirect estimates unless certain assumptions are satisfied since the mediator status is not randomized. This study describes methods to estimate causal direct and indirect effects and reports the results of a large Monte Carlo simulation study on the performance of the ordinary regression and modern causal mediation analysis methods, including a previously untested doubly robust sequential g-estimation method, when there are confounders of the mediator-to-outcome relation. Results show that failing to measure and incorporate potential post-treatment confounders in a mediation model leads to biased estimates, regardless of the analysis method used. Results emphasize the importance of measuring potential confounding variables and conducting sensitivity analysis.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNational Institute on Drug Abuse
dc.description.versionPublisher version
dc.description.volume11
dc.identifier.doi10.3389/fpsyg.2020.02067
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02376
dc.identifier.issn1664-1078
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85089997951
dc.identifier.urihttps://doi.org/10.3389/fpsyg.2020.02067
dc.identifier.wos566203200001
dc.keywordsCausality
dc.keywordsG-estimation
dc.keywordsMediation
dc.keywordsPropensity score
dc.keywordsSequential ignorability
dc.language.isoeng
dc.publisherFrontiers
dc.relation.grantnoR01DA009757
dc.relation.ispartofFrontiers in Psychology
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9012
dc.subjectPsychology
dc.titleCausal mediation analysis in the presence of post-treatment confounding variables: a Monte Carlo simulation study
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSakarya, Yasemin Kisbu
local.contributor.kuauthorSelçuk, Esra Çetinkaya
local.publication.orgunit1College of Social Sciences and Humanities
local.publication.orgunit1GRADUATE SCHOOL OF SOCIAL SCIENCES AND HUMANITIES
local.publication.orgunit2Department of Psychology
local.publication.orgunit2Graduate School of Social Sciences and Humanities
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublicatione192fff1-4efe-45a7-ab71-30233fc185a9
relation.isOrgUnitOfPublication.latestForDiscoveryd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isParentOrgUnitOfPublication3f7621e3-0d26-42c2-af64-58a329522794
relation.isParentOrgUnitOfPublicationc5c9bf5f-4655-411c-a602-0d68f2e2ad88
relation.isParentOrgUnitOfPublication.latestForDiscovery3f7621e3-0d26-42c2-af64-58a329522794

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9012.pdf
Size:
2.41 MB
Format:
Adobe Portable Document Format