Publication:
The tsc- pfed architecture for privacy-preserving fl

dc.contributor.coauthorTruex, Stacey
dc.contributor.coauthorLiu, Ling
dc.contributor.coauthorWei, Wenqi
dc.contributor.coauthorChow, Ka Ho
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorGürsoy, Mehmet Emre
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid330368
dc.date.accessioned2024-11-09T22:59:25Z
dc.date.issued2021
dc.description.abstractIn this paper we will introduce our system for trust and (s) under bar eurity enhanced (c) under bar ustomizable (p) under bar rivate federated learning: TSC-PFed. We combine secure mUItiparty computation and differential privacy to allow participants to leverage known trust dynamics which allow for increased ML model accuracy while preserving privacy guarantees and introduce an update auditor to protect against malicious participants launching dangerous label Dipping data poisoning. We additionally introduce customizable modules into the TSC-PFed ecosystem which (a) allow users to customize the type of privacy protection provided and (b) provide a tiered participant selection approach which considers variation in privacy budgets.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/TPSISA52974.2021.00052
dc.identifier.isbn978-1-6654-1623-8
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85128765442
dc.identifier.urihttp://dx.doi.org/10.1109/TPSISA52974.2021.00052
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7878
dc.identifier.wos852717500024
dc.keywordsN/A
dc.languageEnglish
dc.publisherIEEE Computer Soc
dc.source2021 Third IEEE International Conference on Trust, Privacy and Security In Intelligent Systems and Applications (Tps-Isa 2021)
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectInformation systems
dc.subjectTheory methods
dc.titleThe tsc- pfed architecture for privacy-preserving fl
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7676-0167
local.contributor.kuauthorGürsoy, Mehmet Emre
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files