Publication:
Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras

dc.contributor.coauthorKaniuth, Eberhard
dc.contributor.coauthorLau, Anthony To-Ming
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜlger, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T22:59:26Z
dc.date.issued2010
dc.description.abstractLet A be a semisimple and regular commutative Banach algebra with bounded approximate identity. We study multipliers of A, in particular power bounded ones, and the associated ideals of A and A-invariant projections of the dual space of A. Samples of the results are general versions of the classical theorems of Choquet-Deny and of Foguel about measures on locally compact abelian groups. The results are linked to sets of synthesis in the Gelfand spectrum of A, and the main applications are concerned with Fourier and Fourier-Stieltjes algebras of locally compact groups.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume81
dc.identifier.doi10.1112/jlms/jdp068
dc.identifier.issn0024-6107
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-76549110107
dc.identifier.urihttps://doi.org/10.1112/jlms/jdp068
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7886
dc.identifier.wos273892800014
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofJournal of the London Mathematical Society-Second Series
dc.subjectMathematics
dc.titleMultipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÜlger, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files