Publication:
Optimization of capacitance in supercapacitors by constructing an experimentally validated hybrid artificial neural networks-genetic algorithm framework

dc.contributor.coauthorKaya, Duygu
dc.contributor.coauthorKoroglu, Dilara
dc.contributor.coauthorUralcan, Betul
dc.contributor.departmentKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorAydın, Erdal
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-01-19T10:28:37Z
dc.date.issued2023
dc.description.abstractSupercapacitors are high power electrochemical energy storage systems that are attractive candidates for use in high power applications. Yet, their widespread adoption has been restricted due to their relatively low energy density. Improving the energy storage performance of supercapacitors is linked to rationally optimizing the key descriptors that affect capacitance. This work presents a systematic approach based on a hybrid artificial neural network (ANN) and genetic algorithm (GA) integrated with the Big M method to efficiently and rationally design carbon-based supercapacitors with improved energy storage performance. By performing structural and electrochemical characterization on systems we fabricate, we experimentally validate the robustness and generalizability of the developed ANN-GA framework. This study takes a step towards the rational design of supercapacitors by implementing the hybrid ANN-GA framework as an optimization tool to provide guidelines for rationally tuning material properties and operational conditions for improved capacitance.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThis work was supported by grants from The Scientific and Technological Research Council of Turkey (TUBITAK) under BIDEB 2232-A International Fellowship for Outstanding Researchers (Project Number T118C220) , Bogazici University Research Fund (Project Numbers 17841, 18982) and Istanbul Kalkinma Ajansi, Turkey (Project Number TR10/21/YEP/0001) .
dc.description.volume568
dc.identifier.doi10.1016/j.jpowsour.2023.232987
dc.identifier.eissn1873-2755
dc.identifier.issn0378-7753
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85151016747
dc.identifier.urihttps://doi.org/10.1016/j.jpowsour.2023.232987
dc.identifier.urihttps://hdl.handle.net/20.500.14288/25760
dc.identifier.wos970297300001
dc.keywordsSupercapacitors
dc.keywordsMachine learning
dc.keywordsOptimization
dc.keywordsNeural networks
dc.keywordsGenetic algorithm
dc.keywordsExperimental validation
dc.language.isoeng
dc.publisherElsevier
dc.relation.grantnoScientific and Technological Research Council of Turkey (TUBITAK) under BIDEB [2232-A, T118C220]; Bogazici University Research Fund [17841, 18982]; Istanbul Kalkinma Ajansi, Turkey [TR10/21/YEP/0001]
dc.relation.ispartofJournal of Power Sources
dc.subjectChemistry, physical
dc.subjectElectrochemistry
dc.subjectEnergy and fuels
dc.subjectMaterials science, multidisciplinary
dc.titleOptimization of capacitance in supercapacitors by constructing an experimentally validated hybrid artificial neural networks-genetic algorithm framework
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAydın, Erdal
local.publication.orgunit1College of Engineering
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Chemical and Biological Engineering
local.publication.orgunit2KUTEM (Koç University Tüpraş Energy Center)
relation.isOrgUnitOfPublication6ce65247-25c7-415b-a771-a9f0249b3a40
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscovery6ce65247-25c7-415b-a771-a9f0249b3a40
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files