Publication:
Should recommendation agents think like people?

dc.contributor.coauthorBloom, Paul N.
dc.contributor.coauthorLurie, Nicholas H.
dc.contributor.coauthorCooil, Bruce
dc.contributor.departmentDepartment of Business Administration
dc.contributor.kuauthorAksoy, Lerzan
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.date.accessioned2024-11-09T23:47:51Z
dc.date.issued2006
dc.description.abstractElectronic recommendation agents have the potential to increase the level of service provided by firms operating in the online environment. Recommendation agents assist consumers in making product decisions by generating rank-ordered alternative lists based on consumer preferences. However, many of the online agents currently in use rank options in different ways than the consumers they are designed to help. Two experiments examine the role of similarity between an electronic agent and a consumer, in terms of actual similarity of attribute weights and perceived similarity of decision strategies, on the quality of consumer choices. Results indicate that it helps consumers to use a recommendation agent that thinks like them, either in terms of attribute weights or decision strategies. When agents are completely dissimilar, consumers may be no better, and sometimes worse off, using an agent's ordered list than if they simply used a randomly ordered list of options.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume8
dc.identifier.doi10.1177/1094670506286326
dc.identifier.eissn1552-7379
dc.identifier.issn1094-6705
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-33646181967
dc.identifier.urihttps://doi.org/10.1177/1094670506286326
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14176
dc.identifier.wos240609100002
dc.keywordsDecision making
dc.keywordsElectronic commerce
dc.keywordsRecommendation agents
dc.keywordsPersonalization
dc.keywordsInformation search multiple-item scale
dc.keywordsDecision-making
dc.keywordsInformation
dc.keywordsConsumer
dc.keywordsSimilarity
dc.keywordsService
dc.keywordsEnvironments
dc.keywordsPersistence
dc.keywordsComplexity
dc.keywordsSelection
dc.language.isoeng
dc.publisherSage
dc.relation.ispartofJournal of Service Research
dc.subjectBusiness
dc.titleShould recommendation agents think like people?
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAksoy, Lerzan
local.publication.orgunit1College of Administrative Sciences and Economics
local.publication.orgunit2Department of Business Administration
relation.isOrgUnitOfPublicationca286af4-45fd-463c-a264-5b47d5caf520
relation.isOrgUnitOfPublication.latestForDiscoveryca286af4-45fd-463c-a264-5b47d5caf520
relation.isParentOrgUnitOfPublication972aa199-81e2-499f-908e-6fa3deca434a
relation.isParentOrgUnitOfPublication.latestForDiscovery972aa199-81e2-499f-908e-6fa3deca434a

Files